We embrace virtual the rest of the way, and get rid of the
`assert(false)` 0-param constructors.
We also list config base classes first, so the constructor order is
always:
1. all the configs
2. all the stores
Each in the same order
For each known realisation, store:
- its output
- its output path
This comes with a set of needed changes:
- New `realisations` module declaring the types needed for describing
these mappings
- New `Store::registerDrvOutput` method registering all the needed informations
about a derivation output (also replaces `LocalStore::linkDeriverToPath`)
- new `Store::queryRealisation` method to retrieve the informations for a
derivations
This introcudes some redundancy on the remote-store side between
`wopQueryDerivationOutputMap` and `wopQueryRealisation`.
However we might need to keep both (regardless of backwards compat)
because we sometimes need to get some infos for all the outputs of a
derivation (where `wopQueryDerivationOutputMap` is handy), but all the
stores can't implement it − because listing all the outputs of a
derivation isn't really possible for binary caches where the server
doesn't allow to list a directory.
In particular, this means that derivations can output derivations. But
that ramification isn't (yet!) useful as we would want, since there is
no way to have a dependent derivation that is itself a dependent
derivation.
Rework the `Store` hierarchy so that there's now one hierarchy for the
store configs and one for the implementations (where each implementation
extends the corresponding config). So a class hierarchy like
```
StoreConfig-------->Store
| |
v v
SubStoreConfig----->SubStore
| |
v v
SubSubStoreConfig-->SubSubStore
```
(with virtual inheritance to prevent DDD).
The advantage of this architecture is that we can now introspect the configuration of a store without having to instantiate the store itself
Directly register the store classes rather than a function to build an
instance of them.
This gives the possibility to introspect static members of the class or
choose different ways of instantiating them.
Add a fallback path in `queryPartialDerivationOutputMap` for daemons
that don't support it.
Also upstreams a couple methods from `SSHStore` to `RemoteStore` as this
is needed to handle the fallback path.
This assumption is broken by CA derivations. Making a PR now to do the
breaking daemon change as soon as possible (if it is already too late,
we can bump protocol intead).
Generalize `queryDerivationOutputNames` and `queryDerivationOutputs` by
adding a `queryDerivationOutputMap` that returns the map
`outputName=>outputPath`
(not that this is not equivalent to merging the results of
`queryDerivationOutputs` and `queryDerivationOutputNames` as sets don't
preserve the order, so we would end up with an incorrect mapping).
squash! Add a way to get all the outputs of a derivation with their label
Rename StorePathMap to OutputPathMap
I’m not 100% sure this is wanted since it kind of makes everything
have to know about ca even if they don’t really want to. But it also
make things easier in dealing with looking up ca.
Substituters can substitute from one store dir to another with a
little bit of help. The store api just needs to have a CA so it can
recompute the store path based on the new store dir. We can only do
this for fixed output derivations with no references, though.
This function was used in only one place, where it could easily be
replaced by readDerivation() since it's not
performance-critical. (This function appears to have been modelled
after queryDerivationOutputs(), which exists only to make the garbage
collector faster.)
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
Since its superclass RemoteStore::Connection contains 'to' and 'from'
fields that refer to the file descriptor maintained in the subclass,
it was possible for the flush() call in Connection::~Connection() to
write to a closed file descriptor (or worse, a file descriptor now
referencing another file). So make sure that the file descriptor
survives 'to' and 'from'.
This can be iterated on and currently leaves out settings we know we
want to forward, but it fixes#1713 and fixes#1935 and isn't
fundamentally broken like the status quo. Future changes are suggested
in a comment.
This is a hack to make hydra-queue-runner free its temproots
periodically, thereby ensuring that garbage collection of the
corresponding paths is not blocked until the queue runner is
restarted.
It would be better if temproots could be released earlier than at
process exit. I started working on a RAII object returned by functions
like addToStore() that releases temproots. However, this would be a
pretty massive change so I gave up on it for now.
Functions like copyClosure() had 3 bool arguments, which creates a
severe risk of mixing up arguments.
Also, implement copyClosure() using copyPaths().
Opening an SSHStore or LegacySSHStore does not actually establish a
connection, so the try/catch block here did nothing. Added a
Store::connect() method to test whether a connection can be
established.
The typical use is to inherit Config and add Setting<T> members:
class MyClass : private Config
{
Setting<int> foo{this, 123, "foo", "the number of foos to use"};
Setting<std::string> bar{this, "blabla", "bar", "the name of the bar"};
MyClass() : Config(readConfigFile("/etc/my-app.conf"))
{
std::cout << foo << "\n"; // will print 123 unless overriden
}
};
Currently, this is used by Store and its subclasses for store
parameters. You now get a warning if you specify a non-existant store
parameter in a store URI.
This provides a significant speedup, e.g. 64 s -> 12 s for
nix-build --dry-run -I nixpkgs=channel:nixos-16.03 '<nixpkgs/nixos/tests/misc.nix>' -A test
on a cold local and CloudFront cache.
The alternative is to use lots of concurrent daemon connections but
that seems wasteful.
* Unify SSH code in SSHStore and LegacySSHStore.
* Fix a race starting the SSH master. We now wait synchronously for
the SSH master to finish starting. This prevents the SSH clients
from starting their own connections.
* Don't use a master if max-connections == 1.
* Add a "max-connections" store parameter.
* Add a "compress" store parameter.
The store parameter "write-nar-listing=1" will cause BinaryCacheStore
to write a file ‘<store-hash>.ls.xz’ for each ‘<store-hash>.narinfo’
added to the binary cache. This file contains an XZ-compressed JSON
file describing the contents of the NAR, excluding the contents of
regular files.
E.g.
{
"version": 1,
"root": {
"type": "directory",
"entries": {
"lib": {
"type": "directory",
"entries": {
"Mcrt1.o": {
"type": "regular",
"size": 1288
},
"Scrt1.o": {
"type": "regular",
"size": 3920
},
}
}
}
...
}
}
(The actual file has no indentation.)
This is intended to speed up the NixOS channels programs index
generator [1], since fetching gazillions of large NARs from
cache.nixos.org is currently a bottleneck for updating the regular
(non-small) channel.
[1] https://github.com/NixOS/nixos-channel-scripts/blob/master/generate-programs-index.cc
The fact that queryPathInfo() is synchronous meant that we needed a
thread for every concurrent binary cache lookup, even though they end
up being handled by the same download thread. Requiring hundreds of
threads is not a good idea. So now there is an asynchronous version of
queryPathInfo() that takes a callback function to process the
result. Similarly, enqueueDownload() now takes a callback rather than
returning a future.
Thus, a command like
nix path-info --store https://cache.nixos.org/ -r /nix/store/slljrzwmpygy1daay14kjszsr9xix063-nixos-16.09beta231.dccf8c5
that returns 4941 paths now takes 1.87s using only 2 threads (the main
thread and the downloader thread). (This is with a prewarmed
CloudFront.)
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
This enables an optimisation in hydra-queue-runner, preventing a
download of a NAR it just uploaded to the cache when reading files
like hydra-build-products.
This allows a RemoteStore object to be used safely from multiple
threads concurrently. It will make multiple daemon connections if
necessary.
Note: pool.hh and sync.hh have been copied from the Hydra source tree.
Previously, to build a derivation remotely, we had to copy the entire
closure of the .drv file to the remote machine, even though we only
need the top-level derivation. This is very wasteful: the closure can
contain thousands of store paths, and in some Hydra use cases, include
source paths that are very large (e.g. Git/Mercurial checkouts).
So now there is a new operation, StoreAPI::buildDerivation(), that
performs a build from an in-memory representation of a derivation
(BasicDerivation) rather than from a on-disk .drv file. The only files
that need to be in the Nix store are the sources of the derivation
(drv.inputSrcs), and the needed output paths of the dependencies (as
described by drv.inputDrvs). "nix-store --serve" exposes this
interface.
Note that this is a privileged operation, because you can construct a
derivation that builds any store path whatsoever. Fixing this will
require changing the hashing scheme (i.e., the output paths should be
computed from the other fields in BasicDerivation, allowing them to be
verified without access to other derivations). However, this would be
quite nice because it would allow .drv-free building (e.g. "nix-env
-i" wouldn't have to write any .drv files to disk).
Fixes#173.
Hello!
The patch below adds a ‘verifyStore’ RPC with the same signature as the
current LocalStore::verifyStore method.
Thanks,
Ludo’.
>From aef46c03ca77eb6344f4892672eb6d9d06432041 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Ludovic=20Court=C3=A8s?= <ludo@gnu.org>
Date: Mon, 1 Jun 2015 23:17:10 +0200
Subject: [PATCH] Add a 'verifyStore' remote procedure call.
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
To implement binary caches efficiently, Hydra needs to be able to map
the hash part of a store path (e.g. "gbg...zr7") to the full store
path (e.g. "/nix/store/gbg...kzr7-subversion-1.7.5"). (The binary
cache mechanism uses hash parts as a key for looking up store paths to
ensure privacy.) However, doing a search in the Nix store for
/nix/store/<hash>* is expensive since it requires reading the entire
directory. queryPathFromHashPart() prevents this by doing a cheap
database lookup.
queryValidPaths() combines multiple calls to isValidPath() in one.
This matters when using the Nix daemon because it reduces latency.
For instance, on "nix-env -qas \*" it reduces execution time from 5.7s
to 4.7s (which is indistinguishable from the non-daemon case).
Getting substitute information using the binary cache substituter has
non-trivial latency overhead. A package or NixOS system configuration
can have hundreds of dependencies, and in the worst case (when the
local info cache is empty) we have to do a separate HTTP request for
each of these. If the ping time to the server is t, getting N info
files will take tN seconds; e.g., with a ping time of 0.1s to
nixos.org, sequentially downloading 1000 info files (a typical NixOS
config) will take at least 100 seconds.
To fix this problem, the binary cache substituter can now perform
requests in parallel. This required changing the substituter
interface to support a function querySubstitutablePathInfos() that
queries multiple paths at the same time, and rewriting queryMissing()
to take advantage of parallelism. (Due to local caching,
parallelising queryMissing() is sufficient for most use cases, since
it's almost always called before building a derivation and thus fills
the local info cache.)
For example, parallelism speeds up querying all 1056 paths in a
particular NixOS system configuration from 116s to 2.6s. It works so
well because the eccentricity of the top-level derivation in the
dependency graph is only 9. So we only need 10 round-trips (when
using an unlimited number of parallel connections) to get everything.
Currently we do a maximum of 150 parallel connections to the server.
Thus it's important that the binary cache server (e.g. nixos.org) has
a high connection limit. Alternatively we could use HTTP pipelining,
but WWW::Curl doesn't support it and libcurl has a hard-coded limit of
5 requests per pipeline.
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes#27.