We embrace virtual the rest of the way, and get rid of the
`assert(false)` 0-param constructors.
We also list config base classes first, so the constructor order is
always:
1. all the configs
2. all the stores
Each in the same order
For each known realisation, store:
- its output
- its output path
This comes with a set of needed changes:
- New `realisations` module declaring the types needed for describing
these mappings
- New `Store::registerDrvOutput` method registering all the needed informations
about a derivation output (also replaces `LocalStore::linkDeriverToPath`)
- new `Store::queryRealisation` method to retrieve the informations for a
derivations
This introcudes some redundancy on the remote-store side between
`wopQueryDerivationOutputMap` and `wopQueryRealisation`.
However we might need to keep both (regardless of backwards compat)
because we sometimes need to get some infos for all the outputs of a
derivation (where `wopQueryDerivationOutputMap` is handy), but all the
stores can't implement it − because listing all the outputs of a
derivation isn't really possible for binary caches where the server
doesn't allow to list a directory.
Rework the `Store` hierarchy so that there's now one hierarchy for the
store configs and one for the implementations (where each implementation
extends the corresponding config). So a class hierarchy like
```
StoreConfig-------->Store
| |
v v
SubStoreConfig----->SubStore
| |
v v
SubSubStoreConfig-->SubSubStore
```
(with virtual inheritance to prevent DDD).
The advantage of this architecture is that we can now introspect the configuration of a store without having to instantiate the store itself
Add a new `init()` method to the `Store` class that is supposed to
handle all the effectful initialisation needed to set-up the store.
The constructor should remain side-effect free and just initialize the
c++ data structure.
The goal behind that is that we can create “dummy” instances of each
store to query static properties about it (the parameters it accepts for
example)
Directly register the store classes rather than a function to build an
instance of them.
This gives the possibility to introspect static members of the class or
choose different ways of instantiating them.
Evidentally this was never implemented because Nix switched to using
`buildDerivation` exclusively before `build-remote.pl` was rewritten.
The `nix-copy-ssh` test (already) tests this.
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
It adds a new operation, cmdAddToStoreNar, that does the same thing as
the corresponding nix-daemon operation, i.e. call addToStore(). This
replaces cmdImportPaths, which has the major issue that it sends the
NAR first and the store path second, thus requiring us to store the
incoming NAR either in memory or on disk until we decide what to do
with it.
For example, this reduces the memory usage of
$ nix copy --to 'ssh://localhost?remote-store=/tmp/nix' /nix/store/95cwv4q54dc6giaqv6q6p4r02ia2km35-blender-2.79
from 267 MiB to 12 MiB.
Probably fixes#1988.