Functions like copyClosure() had 3 bool arguments, which creates a
severe risk of mixing up arguments.
Also, implement copyClosure() using copyPaths().
Fixes
client# error: size mismatch importing path ‘/nix/store/ywf5fihjlxwijm6ygh6s0a353b5yvq4d-libidn2-0.16’; expected 0, got 120264
This is mostly an artifact of the NixOS VM test environment, where the
Nix database doesn't contain hashes/sizes.
http://hydra.nixos.org/build/53537471
For backwards compatibility, if the URI is just a hostname, ssh://
(i.e. LegacySSHStore) is prepended automatically.
Also, all fields except the URI are now optional. For example, this is
a valid nix.machines file:
local?root=/tmp/nix
This is useful for testing the remote build machinery since you don't
have to mess around with ssh.
This default implementation of buildPaths() does nothing if all
requested paths are already valid, and throws an "unsupported
operation" error otherwise. This fixes a regression introduced by
c30330df6f in binary cache and legacy
SSH stores.
The typical use is to inherit Config and add Setting<T> members:
class MyClass : private Config
{
Setting<int> foo{this, 123, "foo", "the number of foos to use"};
Setting<std::string> bar{this, "blabla", "bar", "the name of the bar"};
MyClass() : Config(readConfigFile("/etc/my-app.conf"))
{
std::cout << foo << "\n"; // will print 123 unless overriden
}
};
Currently, this is used by Store and its subclasses for store
parameters. You now get a warning if you specify a non-existant store
parameter in a store URI.
This is useless because the client also caches path info, and can
cause problems for long-running clients like hydra-queue-runner
(i.e. it may return cached info about paths that have been
garbage-collected).
Previously, the Settings class allowed other code to query for string
properties, which led to a proliferation of code all over the place making
up new options without any sort of central registry of valid options. This
commit pulls all those options back into the central Settings class and
removes the public get() methods, to discourage future abuses like that.
Furthermore, because we know the full set of options ahead of time, we
now fail loudly if someone enters an unrecognized option, thus preventing
subtle typos. With some template fun, we could probably also dump the full
set of options (with documentation, defaults, etc.) to the command line,
but I'm not doing that yet here.
... and use this in Downloader::downloadCached(). This fixes
$ nix-build https://nixos.org/channels/nixos-16.09-small/nixexprs.tar.xz -A hello
error: cannot import path ‘/nix/store/csfbp1s60dkgmk9f8g0zk0mwb7hzgabd-nixexprs.tar.xz’ because it lacks a valid signature
This writes info about every path in the closure in the same format as
‘nix path-info --json’. Thus it also includes NAR hashes and sizes.
Example:
[
{
"path": "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10",
"narHash": "sha256:0ckdc4z20kkmpqdilx0wl6cricxv90lh85xpv2qljppcmz6vzcxl",
"narSize": 197648,
"references": [
"/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10",
"/nix/store/27binbdy296qvjycdgr1535v8872vz3z-glibc-2.24"
],
"closureSize": 20939776
},
{
"path": "/nix/store/27binbdy296qvjycdgr1535v8872vz3z-glibc-2.24",
"narHash": "sha256:1nfn3m3p98y1c0kd0brp80dn9n5mycwgrk183j17rajya0h7gax3",
"narSize": 20742128,
"references": [
"/nix/store/27binbdy296qvjycdgr1535v8872vz3z-glibc-2.24"
],
"closureSize": 20742128
}
]
Fixes#1134.
The store parameter "write-nar-listing=1" will cause BinaryCacheStore
to write a file ‘<store-hash>.ls.xz’ for each ‘<store-hash>.narinfo’
added to the binary cache. This file contains an XZ-compressed JSON
file describing the contents of the NAR, excluding the contents of
regular files.
E.g.
{
"version": 1,
"root": {
"type": "directory",
"entries": {
"lib": {
"type": "directory",
"entries": {
"Mcrt1.o": {
"type": "regular",
"size": 1288
},
"Scrt1.o": {
"type": "regular",
"size": 3920
},
}
}
}
...
}
}
(The actual file has no indentation.)
This is intended to speed up the NixOS channels programs index
generator [1], since fetching gazillions of large NARs from
cache.nixos.org is currently a bottleneck for updating the regular
(non-small) channel.
[1] https://github.com/NixOS/nixos-channel-scripts/blob/master/generate-programs-index.cc
The fact that queryPathInfo() is synchronous meant that we needed a
thread for every concurrent binary cache lookup, even though they end
up being handled by the same download thread. Requiring hundreds of
threads is not a good idea. So now there is an asynchronous version of
queryPathInfo() that takes a callback function to process the
result. Similarly, enqueueDownload() now takes a callback rather than
returning a future.
Thus, a command like
nix path-info --store https://cache.nixos.org/ -r /nix/store/slljrzwmpygy1daay14kjszsr9xix063-nixos-16.09beta231.dccf8c5
that returns 4941 paths now takes 1.87s using only 2 threads (the main
thread and the downloader thread). (This is with a prewarmed
CloudFront.)
This allows commands like "nix verify --all" or "nix path-info --all"
to work on S3 caches.
Unfortunately, this requires some ugly hackery: when querying the
contents of the bucket, we don't want to have to read every .narinfo
file. But the S3 bucket keys only include the hash part of each store
path, not the name part. So as a special exception
queryAllValidPaths() can now return store paths *without* the name
part, and queryPathInfo() accepts such store paths (returning a
ValidPathInfo object containing the full name).
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
This specifies the number of distinct signatures required to consider
each path "trusted".
Also renamed ‘--no-sigs’ to ‘--no-trust’ for the flag that disables
verifying whether a path is trusted (since a path can also be trusted
if it has no signatures, but was built locally).
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes#27.
‘nix-store --export’.
* Add a Perl module that provides the functionality of
‘nix-copy-closure --to’. This is used by build-remote.pl so it no
longer needs to start a separate nix-copy-closure process. Also, it
uses the Perl API to do the export, so it doesn't need to start a
separate nix-store process either. As a result, nix-copy-closure
and build-remote.pl should no longer fail on very large closures due
to an "Argument list too long" error. (Note that having very many
dependencies in a single derivation can still fail because the
environment can become too large. Can't be helped though.)
derivations added to the store by clients have "correct" output
paths (meaning that the output paths are computed by hashing the
derivation according to a certain algorithm). This means that a
malicious user could craft a special .drv file to build *any*
desired path in the store with any desired contents (so long as the
path doesn't already exist). Then the attacker just needs to wait
for a victim to come along and install the compromised path.
For instance, if Alice (the attacker) knows that the latest Firefox
derivation in Nixpkgs produces the path
/nix/store/1a5nyfd4ajxbyy97r1fslhgrv70gj8a7-firefox-5.0.1
then (provided this path doesn't already exist) she can craft a .drv
file that creates that path (i.e., has it as one of its outputs),
add it to the store using "nix-store --add", and build it with
"nix-store -r". So the fake .drv could write a Trojan to the
Firefox path. Then, if user Bob (the victim) comes along and does
$ nix-env -i firefox
$ firefox
he executes the Trojan injected by Alice.
The fix is to have the Nix daemon verify that derivation outputs are
correct (in addValidPath()). This required some refactoring to move
the hash computation code to libstore.
(Linux) machines no longer maintain the atime because it's too
expensive, and on the machines where --use-atime is useful (like the
buildfarm), reading the atimes on the entire Nix store takes way too
much time to make it practical.
SHA-256 outputs of fixed-output derivations. I.e. they now produce
the same store path:
$ nix-store --add x
/nix/store/j2fq9qxvvxgqymvpszhs773ncci45xsj-x
$ nix-store --add-fixed --recursive sha256 x
/nix/store/j2fq9qxvvxgqymvpszhs773ncci45xsj-x
the latter being the same as the path that a derivation
derivation {
name = "x";
outputHashAlgo = "sha256";
outputHashMode = "recursive";
outputHash = "...";
...
};
produces.
This does change the output path for such fixed-output derivations.
Fortunately they are quite rare. The most common use is fetchsvn
calls with SHA-256 hashes. (There are a handful of those is
Nixpkgs, mostly unstable development packages.)
* Documented the computation of store paths (in store-api.cc).
accessed time of paths that may be deleted. Anything more recently
used won't be deleted. The time is specified in time_t,
e.g. seconds since 1970-01-01 00:00:00 UTC; use `date +%s' to
convert to time_t from the command line.
Example: to delete everything that hasn't been used in the last two
months:
$ nix-store --gc -v --max-atime $(date +%s -d "2 months ago")
order of ascending last access time. This is useful in conjunction
with --max-freed or --max-links to prefer deleting non-recently used
garbage, which is good (especially in the build farm) since garbage
may become live again.
The code could easily be modified to accept other criteria for
ordering garbage by changing the comparison operator used by the
priority queue in collectGarbage().
again. (After the previous substituter mechanism refactoring I
didn't update the code that obtains the references of substitutable
paths.) This required some refactoring: the substituter programs
are now kept running and receive/respond to info requests via
stdin/stdout.
bytes have been freed, `--max-links' to stop when the Nix store
directory has fewer than N hard links (the latter being important
for very large Nix stores on filesystems with a 32000 subdirectories
limit).
$ nix-env -e $(which firefox)
or
$ nix-env -e /nix/store/nywzlygrkfcgz7dfmhm5xixlx1l0m60v-pan-0.132
* nix-env -i: if an argument contains a slash anywhere, treat it as a
path and follow it through symlinks into the Nix store. This allows
things like
$ nix-build -A firefox
$ nix-env -i ./result
* nix-env -q/-i/-e: don't complain when the `*' selector doesn't match
anything. In particular, `nix-env -q \*' doesn't fail anymore on an
empty profile.
need any info on substitutable paths, we just call the substituters
(such as download-using-manifests.pl) directly. This means that
it's no longer necessary for nix-pull to register substitutes or for
nix-channel to clear them, which makes those operations much faster
(NIX-95). Also, we don't have to worry about keeping nix-pull
manifests (in /nix/var/nix/manifests) and the database in sync with
each other.
The downside is that there is some overhead in calling an external
program to get the substitutes info. For instance, "nix-env -qas"
takes a bit longer.
Abolishing the substitutes table also makes the logic in
local-store.cc simpler, as we don't need to store info for invalid
paths. On the downside, you cannot do things like "nix-store -qR"
on a substitutable but invalid path (but nobody did that anyway).
* Never catch interrupts (the Interrupted exception).
computing the store path (NIX-77). This is an important security
property in multi-user Nix stores.
Note that this changes the store paths of derivations (since the
derivation aterms are added using addTextToStore), but not most
outputs (unless they use builtins.toFile).
from a source directory. All files for which a predicate function
returns true are copied to the store. Typical example is to leave
out the .svn directory:
stdenv.mkDerivation {
...
src = builtins.filterSource
(path: baseNameOf (toString path) != ".svn")
./source-dir;
# as opposed to
# src = ./source-dir;
}
This is important because the .svn directory influences the hash in
a rather unpredictable and variable way.
mode. Presumably nix-worker would be setuid to the Nix store user.
The worker performs all operations on the Nix store and database, so
the caller can be completely unprivileged.
This is already much more secure than the old setuid scheme, since
the worker doesn't need to do Nix expression evaluation and so on.
Most importantly, this means that it doesn't need to access any user
files, with all resulting security risks; it only performs pure
store operations.
Once this works, it is easy to move to a daemon model that forks off
a worker for connections established through a Unix domain socket.
That would be even more secure.
containing functions that operate on the Nix store. One
implementation is LocalStore, which operates on the Nix store
directly. The next step, to enable secure multi-user Nix, is to
create a different implementation RemoteStore that talks to a
privileged daemon process that uses LocalStore to perform the actual
operations.