We want to be able to write down `foo.drv^bar.drv^baz`:
`foo.drv^bar.drv` is the dynamic derivation (since it is itself a
derivation output, `bar.drv` from `foo.drv`).
To that end, we create `Single{Derivation,BuiltPath}` types, that are
very similar except instead of having multiple outputs (in a set or
map), they have a single one. This is for everything to the left of the
rightmost `^`.
`NixStringContextElem` has an analogous change, and now can reuse
`SingleDerivedPath` at the top level. In fact, if we ever get rid of
`DrvDeep`, `NixStringContextElem` could be replaced with
`SingleDerivedPath` entirely!
Important note: some JSON formats have changed.
We already can *produce* dynamic derivations, but we can't refer to them
directly. Today, we can merely express building or example at the top
imperatively over time by building `foo.drv^bar.drv`, and then with a
second nix invocation doing `<result-from-first>^baz`, but this is not
declarative. The ethos of Nix of being able to write down the full plan
everything you want to do, and then execute than plan with a single
command, and for that we need the new inductive form of these types.
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
Instead of having a bunch of optional fields, have a few subclasses
which can have mandatory fields.
Additionally, the new `getExtraPathInfo`, and `nixpkgsFlakeRef`, are
moved to `InstallableValue`.
I did these things because https://github.com/NixOS/rfcs/pull/134 ; with
these things moved to `InstallableValue`, the base `Installable` no
longer depends on libexpr! This is a major step towards that.
Also, add a bunch of doc comments for sake of the internal API docs.
Already, we had classes like `BuiltPathsCommand` and `StorePathsCommand`
which provided alternative `run` virtual functions providing the
implementation with more arguments. This was a very nice and easy way to
make writing command; just fill in the virtual functions and it is
fairly clear what to do.
However, exception to this pattern were `Installable{,s}Command`. These
two classes instead just had a field where the installables would be
stored, and various side-effecting `prepare` and `load` machinery too
fill them in. Command would wish out those fields.
This isn't so clear to use.
What this commit does is make those command classes like the others,
with richer `run` functions.
Not only does this restore the pattern making commands easier to write,
it has a number of other benefits:
- `prepare` and `load` are gone entirely! One command just hands just
hands off to the next.
- `useDefaultInstallables` because `defaultInstallables`. This takes
over `prepare` for the one case that needs it, and provides enough
flexiblity to handle `nix repl`'s idiosyncratic migration.
- We can use `ref` instead of `std::shared_ptr`. The former must be
initialized (so it is like Rust's `Box` rather than `Option<Box>`,
This expresses the invariant that the installable are in fact
initialized much better.
This is possible because since we just have local variables not
fields, we can stop worrying about the not-yet-initialized case.
- Fewer lines of code! (Finally I have a large refactor that makes the
number go down not up...)
- `nix repl` is now implemented in a clearer way.
The last item deserves further mention. `nix repl` is not like the other
installable commands because instead working from once-loaded
installables, it needs to be able to load them again and again.
To properly support this, we make a new superclass
`RawInstallablesCommand`. This class has the argument parsing and
completion logic, but does *not* hand off parsed installables but
instead just the raw string arguments.
This is exactly what `nix repl` needs, and allows us to instead of
having the logic awkwardly split between `prepare`,
`useDefaultInstallables,` and `load`, have everything right next to each
other. I think this will enable future simplifications of that argument
defaulting logic, but I am saving those for a future PR --- best to keep
code motion and more complicated boolean expression rewriting separate
steps.
The "diagnostic ignored `-Woverloaded-virtual`" pragma helps because C++
doesn't like our many `run` methods. In our case, we don't mind the
shadowing it all --- it is *intentional* that the derived class only
provides a `run` method, and doesn't call any of the overridden `run`
methods.
Helps with https://github.com/NixOS/rfcs/pull/134
Don’t try and assume that we know the output paths when we’ve just built
with `--dry-run`. Instead make `--dry-run` follow a different code path
that won’t assume the knowledge of the output paths at all.
Fix#6275
I had started the trend of doing `std::visit` by value (because a type
error once mislead me into thinking that was the only form that
existed). While the optomizer in principle should be able to deal with
extra coppying or extra indirection once the lambdas inlined, sticking
with by reference is the conventional default. I hope this might even
improve performance.
In dry run mode, new derivations can't be create, so running the command on anything that has not been evaluated before results in an error message of the form `don't know how to build these paths (may be caused by read-only store access)`.
For comparison, the classical `nix-build --dry-run` doesn't use read-only mode.
Closes#1795
(cherry picked from commit 54525682df707742e58311c32e9c9cb18de1e31f)
In particular, this now works:
$ nix path-info --eval-store auto --store https://cache.nixos.org nixpkgs#hello
Previously this would fail as it would try to upload the hello .drv to
cache.nixos.org. Now the .drv is instantiated in the local store, and
then we check for the existence of the outputs in cache.nixos.org.
Occasionally, `nix-build --check` is fairly helpful and I'd like to be
able to use this feature for flakes that need to be built with `nix
build` as well.
I think this better captures the intent of what's going on: we either
have an opaque store path, or a drv path with some outputs.
Having this structure will also help us support CA derivations: we'll
have to allow the outpath paths to be optional, so the structure we gain
now makes up for the structure we loose then.
This replaces 'nix-env --set'. For example:
$ nix build --profile /nix/var/nix/profiles/system \
~/Misc/eelco-configurations:nixosConfigurations.vyr.config.system.build.toplevel
updates the NixOS system profile from a flake.
This could have been a separate command (e.g. 'nix set-profile') but
1) '--profile' is pretty similar to '--out-link'; and 2) '--profile'
could be useful for other command (like 'nix dev-shell').