Hopefully this fixes "unexpected EOF" failures on macOS
(#3137, #3605, #7242, #7702).
The problem appears to be that under some circumstances, macOS
discards the output written to the slave side of the
pseudoterminal. Hence the parent never sees the "sandbox initialized"
message from the child, even though it succeeded. The conditions are:
* The child finishes very quickly. That's why this bug is likely to
trigger in nix-env tests, since that uses a builtin builder. Adding
a short sleep before the child exits makes the problem go away.
* The parent has closed its duplicate of the slave file
descriptor. This shouldn't matter, since the child has a duplicate
as well, but it does. E.g. moving the close to the bottom of
startBuilder() makes the problem go away. However, that's not a
solution because it would make Nix hang if the child dies before
sending the "sandbox initialized" message.
* The system is under high load. E.g. "make installcheck -j16" makes
the issue pretty reproducible, while it's very rare under "make
installcheck -j1".
As a fix/workaround, we now open the pseudoterminal slave in the
child, rather than the parent. This removes the second condition
(i.e. the parent no longer needs to close the slave fd) and I haven't
been able to reproduce the "unexpected EOF" with this.
We make sure the env var paths are actually set (ie. not "") before
sending them to the canonicalization function. If we forget to do so,
the user will end up facing a puzzled failed assertion internal error.
We issue a non-failing warning as a stop-gap measure. We could want to
revisit this to issue a detailed failing error message in the future.
In unprivileged podman containers, /proc is not fully visible (there
are other filesystems mounted on subdirectories of /proc). Therefore
we can't mount a new /proc in the sandbox that matches the PID
namespace of the sandbox. So this commit automatically disables
sandboxing if /proc is not fully visible.
This didn't work because sandboxing doesn't work in Docker. However,
the sandboxing check is done lazily - after clone(CLONE_NEWNS) fails,
we retry with sandboxing disabled. But at that point, we've already
done UID allocation under the assumption that user namespaces are
enabled.
So let's get rid of the "goto fallback" logic and just detect early
whether user / mount namespaces are enabled.
This commit also gets rid of a compatibility hack for some ancient
Linux kernels (<2.13).
Rather than using `/nix/var/nix/{profiles,gcroots}/per-user/`, put the user
profiles and gcroots under `$XDG_DATA_DIR/nix/{profiles,gcroots}`.
This means that the daemon no longer needs to manage these paths itself
(they are fully handled client-side). In particular, it doesn’t have to
`chown` them anymore (removing one need for root).
This does change the layout of the gc-roots created by nix-env, and is
likely to break some stuff, so I’m not sure how to properly handle that.
`DerivedPath::Built` and `DerivationGoal` were previously using a
regular set with the convention that the empty set means all outputs.
But it is easy to forget about this rule when processing those sets.
Using `OutputSpec` forces us to get it right.
This basically reverts 6e5165b773.
It fixes errors like
sandbox-exec: <internal init prelude>:292:47: unable to open sandbox-minimal.sb: not found
when trying to run a development Nix installed in a user's home
directory.
Also, we're trying to minimize the number of installed files
to make it possible to deploy Nix as a single statically-linked
binary.
Adds a new boolean structured attribute
`outputChecks.<output>.unsafeDiscardReferences` which disables scanning
an output for runtime references.
__structuredAttrs = true;
outputChecks.out.unsafeDiscardReferences = true;
This is useful when creating filesystem images containing their own embedded Nix
store: they are self-contained blobs of data with no runtime dependencies.
Setting this attribute requires the experimental feature
`discard-references` to be enabled.
This makes 'nix develop' set the Linux personality in the same way
that the actual build does, allowing a command like 'nix develop
nix#devShells.i686-linux.default' on x86_64-linux to work correctly.
These only functioned if a very narrow combination of conditions held:
- The result path does not yet exist (--check did not result in
repeated builds), AND
- The result path is not available from any configured substituters, AND
- No remote builders that can build the path are available.
If any of these do not hold, a derivation would be built 0 or 1 times
regardless of the repeat option. Thus, remove it to avoid confusion.
We shouldn't skip this if the supplementary group list is empty,
because then the sandbox won't drop the supplementary groups of the
parent (like "root").
The new experimental feature 'cgroups' enables the use of cgroups for
all builds. This allows better containment and enables setting
resource limits and getting some build stats.
Cgroups are now only used for derivations that require the uid-range
range feature. This allows auto UID allocation even on systems that
don't have cgroups (like macOS).
Also, make things work on modern systems that use cgroups v2 (where
there is a single hierarchy and no "systemd" controller).
After we've send "\2\n" to the parent, we can't send a serialized
exception anymore. It will show up garbled like
$ nix-build --store /tmp/nix --expr 'derivation { name = "foo"; system = "x86_64-linux"; builder = "/foo/bar"; }'
this derivation will be built:
/nix/store/xmdip0z5x1zqpp6gnxld3vqng7zbpapp-foo.drv
building '/nix/store/xmdip0z5x1zqpp6gnxld3vqng7zbpapp-foo.drv'...
ErrorErrorEexecuting '/foo/bar': No such file or directory
error: builder for '/nix/store/xmdip0z5x1zqpp6gnxld3vqng7zbpapp-foo.drv' failed with exit code 1
RewritingSink can handle being fed input where a reference crosses a
chunk boundary. we don't need to load the whole source into memory, and
in fact *not* loading the whole source lets nix build FODs that do not
fit into memory (eg fetchurl'ing data files larger than system memory).