When explicitly requested by the caller, as suggested in the meeting
(https://github.com/NixOS/nix/pull/8090#issuecomment-1531139324)
> @edolstra: { toPath } vs { fromPath } is too implicit
I've opted for the `inputAddressed = true` requirement, because it
we did not agree on renaming the path attributes.
> @roberth: more explicit
> @edolstra: except for the direction; not immediately clear in which direction the rewriting happens
This is in fact the most explicit syntax and a bit redundant, which is
good, because that redundancy lets us deliver an error message that
reminds expression authors that CA provides a better experience to
their users.
This is done in roughly the same way builtin functions are documented.
Also auto-link experimental features for primops, subsuming PR #8371.
Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
Previously, for tarball flakes, we recorded the original URL of the
tarball flake, rather than the URL to which it ultimately
redirects. Thus, a flake URL like
http://example.org/patchelf-latest.tar that redirects to
http://example.org/patchelf-<revision>.tar was not really usable. We
couldn't record the redirected URL, because sites like GitHub redirect
to CDN URLs that we can't rely on to be stable.
So now we use the redirected URL only if the server returns the
`x-nix-is-immutable` or `x-amz-meta-nix-is-immutable` headers in its
response.
This will allow documenting them (in later commits).
Note that we keep the old constructor even if it is no longer used by
Nix code, because it is used in tests/plugins/plugintest.cc, which
suggests that it might be used by some external plugin.
Currently `fromTOML` throws an exception when encountering a timestamp
since the Nix language lacks a way to represent them.
This patch changes this beaviour and makes `fromTOML` parse timestamps as
attrsets of the format
{ _type = "timestamp"; value = "1979-05-27T07:32:00Z"; }
This is guarded by an experimental feature flag to leave room for iterating on the representation.
Motivation
`PathSet` is not correct because string contexts have other forms
(`Built` and `DrvDeep`) that are not rendered as plain store paths.
Instead of wrongly using `PathSet`, or "stringly typed" using
`StringSet`, use `std::std<StringContextElem>`.
-----
In support of this change, `NixStringContext` is now defined as
`std::std<StringContextElem>` not `std:vector<StringContextElem>`. The
old definition was just used by a `getContext` method which was only
used by the eval cache. It can be deleted altogether since the types are
now unified and the preexisting `copyContext` function already suffices.
Summarizing the previous paragraph:
Old:
- `value/context.hh`: `NixStringContext = std::vector<StringContextElem>`
- `value.hh`: `NixStringContext Value::getContext(...)`
- `value.hh`: `copyContext(...)`
New:
- `value/context.hh`: `NixStringContext = std::set<StringContextElem>`
- `value.hh`: `copyContext(...)`
----
The string representation of string context elements no longer contains
the store dir. The diff of `src/libexpr/tests/value/context.cc` should
make clear what the new representation is, so we recommend reviewing
that file first. This was done for two reasons:
Less API churn:
`Value::mkString` and friends did not take a `Store` before. But if
`NixStringContextElem::{parse, to_string}` *do* take a store (as they
did before), then we cannot have the `Value` functions use them (in
order to work with the fully-structured `NixStringContext`) without
adding that argument.
That would have been a lot of churn of threading the store, and this
diff is already large enough, so the easier and less invasive thing to
do was simply make the element `parse` and `to_string` functions not
take the `Store` reference, and the easiest way to do that was to simply
drop the store dir.
Space usage:
Dropping the `/nix/store/` (or similar) from the internal representation
will safe space in the heap of the Nix programming being interpreted. If
the heap contains many strings with non-trivial contexts, the saving
could add up to something significant.
----
The eval cache version is bumped.
The eval cache serialization uses `NixStringContextElem::{parse,
to_string}`, and since those functions are changed per the above, that
means the on-disk representation is also changed.
This is simply done by changing the name of the used for the eval cache
from `eval-cache-v4` to eval-cache-v5`.
----
To avoid some duplication `EvalCache::mkPathString` is added to abstract
over the simple case of turning a store path to a string with just that
string in the context.
Context
This PR picks up where #7543 left off. That one introduced the fully
structured `NixStringContextElem` data type, but kept `PathSet context`
as an awkward middle ground between internal `char[][]` interpreter heap
string contexts and `NixStringContext` fully parsed string contexts.
The infelicity of `PathSet context` was specifically called out during
Nix team group review, but it was agreeing that fixing it could be left
as future work. This is that future work.
A possible follow-up step would be to get rid of the `char[][]`
evaluator heap representation, too, but it is not yet clear how to do
that. To use `NixStringContextElem` there we would need to get the STL
containers to GC pointers in the GC build, and I am not sure how to do
that.
----
PR #7543 effectively is writing the inverse of a `mkPathString`,
`mkOutputString`, and one more such function for the `DrvDeep` case. I
would like that PR to have property tests ensuring it is actually the
inverse as expected.
This PR sets things up nicely so that reworking that PR to be in that
more elegant and better tested way is possible.
Co-authored-by: Théophane Hufschmitt <7226587+thufschmitt@users.noreply.github.com>
With the switch to C++20, the rules became more strict, and we can no
longer initialize base classes. Make them comments instead.
(BTW
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2287r1.html
this offers some new syntax for this use-case. Hopefully this will be
adopted and we can eventually use it.)
We had some local variables left over from the older (more
complicated) implementation of this function. They should all be unused,
but one wasn't by mistake.
Delete them all, and replace the one that was still in use as intended.
Prior to this change, we had a bunch of ad-hoc string manipulation code
scattered around. This made it hard to figure out what data model for
string contexts is.
Now, we still store string contexts most of the time as encoded strings
--- I was wary of the performance implications of changing that --- but
whenever we parse them we do so only through the
`NixStringContextElem::parse` method, which handles all cases. This
creates a data type that is very similar to `DerivedPath` but:
- Represents the funky `=<drvpath>` case as properly distinct from the
others.
- Only encodes a single output, no wildcards and no set, for the
"built" case.
(I would like to deprecate `=<path>`, after which we are in spitting
distance of `DerivedPath` and could maybe get away with fewer types, but
that is another topic for another day.)
this slightly increases the amount of memory used for any given symbol, but this
increase is more than made up for if the symbol is referenced more than once in
the EvalState that holds it. on average every symbol should be referenced at
least twice (once to introduce a binding, once to use it), so we expect no
increase in memory on average.
symbol tables are limited to 2³² entries like position tables, and similar
arguments apply to why overflow is not likely: 2³² symbols would require as many
string instances (at 24 bytes each) and map entries (at 24 bytes or more each,
assuming that the map holds on average at most one item per bucket as the docs
say). a full symbol table would require at least 192GB of memory just for
symbols, which is well out of reach. (an ofborg eval of nixpks today creates
less than a million symbols!)