use site, allowing environments to be stores as vectors of values
rather than maps. This should speed up evaluation and reduce the
number of allocations.
efficiently. The symbol table ensures that there is only one copy
of each symbol, thus allowing symbols to be compared efficiently
using a pointer equality test.
allowed. So `name1@name2', `{attrs1}@{attrs2}' and so on are now no
longer legal. This is no big loss because they were not useful
anyway.
This also changes the output of builtins.toXML for @-patterns
slightly.
shorthand for {x = {y = {z = ...;};};}. This is especially useful
for NixOS configuration files, e.g.
{
services = {
sshd = {
enable = true;
port = 2022;
};
};
}
can now be written as
{
services.sshd.enable = true;
services.sshd.port = 2022;
}
However, it is currently not permitted to write
{
services.sshd = {enable = true;};
services.sshd.port = 2022;
}
as this is considered a duplicate definition of `services.sshd'.
in attribute set pattern matches. This allows defining a function
that takes *at least* the listed attributes, while ignoring
additional attributes. For instance,
{stdenv, fetchurl, fuse, ...}:
stdenv.mkDerivation {
...
};
defines a function that requires an attribute set that contains the
specified attributes but ignores others. The main advantage is that
we can then write in all-packages.nix
aefs = import ../bla/aefs pkgs;
instead of
aefs = import ../bla/aefs {
inherit stdenv fetchurl fuse;
};
This saves a lot of typing (not to mention not having to update
all-packages.nix with purely mechanical changes). It saves as much
typing as the "args: with args;" style, but has the advantage that
the function arguments are properly declared (not implicit in what
the body of the "with" uses).
functions that take a single argument (plain lambdas) into one AST
node (Function) that contains a Pattern node describing the
arguments. Current patterns are single lazy arguments (VarPat) and
matching against an attribute set (AttrsPat).
This refactoring allows other kinds of patterns to be added easily,
such as Haskell-style @-patterns, or list pattern matching.
undefined variables by definition. This matters for the
implementation of "with", which does a call to checkVarDefs to see
if the body of the with has no undefined variables. (It can't be
checked at parse time because you don't know which variables are in
the "with" attribute set.) If we check closed terms, then we check
not just the with body but also the substituted terms, which are
typically very large. This is the cause of the poor nix-env
performance on Nixpkgs lately. It didn't happen earlier because
"with" wasn't used very often in the past.
This fix improves nix-env performance roughly 60x on current Nixpkgs.
nix-env -qa is down from 29.3s to 0.5s on my laptop, and nix-env -qa
--out-path is down from 229s to 3.39s. Not bad for a 1-line fix :-)
attribute) about installed packages in user environments. Thus, an
operation like `nix-env -q --description' shows useful information
not only on available packages but also on installed packages.
* nix-env now passes the entire manifest as an argument to the Nix
expression of the user environment builder (not just a list of
paths), so that in particular the user environment builder has
access to the meta attributes.
* New operation `--set-flag' in nix-env to change meta info of
installed packages. This will be useful to pass per-package
policies to the user environment builder (e.g., how to resolve
collision or whether to disable a package (NIX-80)) or upgrade
policies in nix-env (e.g., that a package should be "masked", that
is, left untouched by upgrade actions). Example:
$ nix-env --set-flag enabled false ghc-6.4
concatenation and string coercion. This was a big mess (see
e.g. NIX-67). Contexts are now folded into strings, so that they
don't cause evaluation errors when they're not expected. The
semantics of paths has been clarified (see nixexpr-ast.def).
toString() and coerceToString() have been merged.
Semantic change: paths are now copied to the store when they're in a
concatenation (and in most other situations - that's the
formalisation of the meaning of a path). So
"foo " + ./bla
evaluates to "foo /nix/store/hash...-bla", not "foo
/path/to/current-dir/bla". This prevents accidental impurities, and
is more consistent with the treatment of derivation outputs, e.g.,
`"foo " + bla' where `bla' is a derivation. (Here `bla' would be
replaced by the output path of `bla'.)
argument has a valid value, i.e., is in a certain domain. E.g.,
{ foo : [true false]
, bar : ["a" "b" "c"]
}: ...
This previously could be done using assertions, but domain checks
will allow the buildfarm to automatically extract the configuration
space from functions.
(closed(closed(closed(...)))) since this reduces performance by
producing bigger terms and killing caching (which incidentally also
prevents useful infinite recursion detection).
`derivations.cc', etc.
* Store the SHA-256 content hash of store paths in the database after
they have been built/added. This is so that we can check whether
the store has been messed with (a la `rpm --verify').
* When registering path validity, verify that the closure property
holds.
Instead we generate data bindings (build and match functions) for
the constructors specified in `constructors.def'. In particular
this removes the conversions between AFuns and strings, and Nix
expression evaluation now seems 3 to 4 times faster.
The expression `with E1; E2' evaluates to E2 with all bindings in
the attribute set E1 substituted. E.g.,
with {x = 123;}; x
evaluates to 123. That is, the attribute set E1 is in scope in E2.
This is particularly useful when importing files containing lots
definitions. E.g., instead of
let {
inherit (import ./foo.nix) a b c d e f;
body = ... a ... f ...;
}
we can now say
with import ./foo.nix;
... a ... f ...
I.e., we don't have to say what variables should be brought into scope.
print a nice backtrace of the stack, rather than vomiting a gigantic
(and useless) aterm on the screen. Example:
error: while evaluating file `.../pkgs/system/test.nix':
while evaluating attribute `subversion' at `.../pkgs/system/all-packages-generic.nix', line 533:
while evaluating function at `.../pkgs/applications/version-management/subversion/default.nix', line 1:
assertion failed at `.../pkgs/applications/version-management/subversion/default.nix', line 13
Since the Nix expression language is lazy, the trace may be
misleading. The purpose is to provide a hint as to the location of
the problem.