Instead, serialize as NAR and send that over, then rehash sever side.
This is alorithmically simpler, but comes at the cost of a newer
parameter to `Store::addToStoreFromDump`.
Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
Part of RFC 133
Extracted from our old IPFS branches.
Co-Authored-By: Matthew Bauer <mjbauer95@gmail.com>
Co-Authored-By: Carlo Nucera <carlo.nucera@protonmail.com>
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Florian Klink <flokli@flokli.de>
Flakes still reside in the Nix store (so there shouldn't be any change
in behaviour), but they are now accessed via the rootFS
accessor. Since rootFS implements access checks, we no longer have to
worry about flake.{nix,lock} or their parents being symlinks that
escape from the flake.
Extracted from the lazy-trees branch.
When a file conflict arises during a package install a suggestion is
made to remove the old entry. This was previously done using the
installable URLs of the old entry. These URLs are quite verbose and
often do not equal the URL of the existing entry.
This change uses the recently introduced profile entry name for the
suggestion, resulting in a simpler output.
The improvement is easily seen in the change to the functional test.
- `nix store add` supports text hashing
With functional test ensuring it matches `builtins.toFile`.
- Factored-out flags for both commands
- Move all common reusable flags to `libcmd`
- They are not part of the *definition* of the CLI infra, just a usag
of it.
- The `libstore` flag couldn't go in `args.hh` in libutil anyways,
would be awkward for it to live alone
- Shuffle around `Cmd*` hierarchy so flags for deprecated commands don't
end up on the new ones
It's better to just check whether the input has all the attributes
needed to consider itself locked (e.g. whether a Git input has an
'rev' attribute).
Also, the 'locked' field was actually incorrect for Git inputs: it
would be set to true even for dirty worktrees. As a result, we got
away with using fetchTree() internally even though fetchTree()
requires a locked input in pure mode. In particular, this allowed
'--override-input' to work by accident.
The fix is to pass a set of "overrides" to call-flake.nix for all the
unlocked inputs (i.e. the top-level flake and any --override-inputs).
No outward facing behavior is changed.
Older methods with same names that operate on on method + algo pair (for
old-style `<method>:algo`) are renamed to `*WithAlgo`.)
The functions are unit-tested in the same way the names for the hash
algorithms are tested.
As discussed in the last Nix team meeting (2024-02-95), this method
doesn't belong because `CanonPath` is a virtual/ideal absolute path
format, not used in file systems beyond the native OS format for which a
"current working directory" is defined.
Progress towards #9205
Some tools which consume the "nix print-dev-env" rc script (such as
"nix-direnv") are sensitive to the use of unbound variables. They use
"set -u".
The "nix print-dev-env" rc script initially unsets "shellHook", then
loads variables from the derivation, and then evaluates "shellHook".
However, most derivations don't have a "shellHook" attribute.
So users get the error "shellHook: unbound variable". This can be
demonstrated with the command:
nix print-dev-env nixpkgs#hello | bash -u
This commit changes the rc script to provide an empty fallback value
for the "shellHook" variable.
Closes: #7951#8253
While preparing PRs like #9753, I've had to change error messages in
dozens of code paths. It would be nice if instead of
EvalError("expected 'boolean' but found '%1%'", showType(v))
we could write
TypeError(v, "boolean")
or similar. Then, changing the error message could be a mechanical
refactor with the compiler pointing out places the constructor needs to
be changed, rather than the error-prone process of grepping through the
codebase. Structured errors would also help prevent the "same" error
from having multiple slightly different messages, and could be a first
step towards error codes / an error index.
This PR reworks the exception infrastructure in `libexpr` to
support exception types with different constructor signatures than
`BaseError`. Actually refactoring the exceptions to use structured data
will come in a future PR (this one is big enough already, as it has to
touch every exception in `libexpr`).
The core design is in `eval-error.hh`. Generally, errors like this:
state.error("'%s' is not a string", getAttrPathStr())
.debugThrow<TypeError>()
are transformed like this:
state.error<TypeError>("'%s' is not a string", getAttrPathStr())
.debugThrow()
The type annotation has moved from `ErrorBuilder::debugThrow` to
`EvalState::error`.
Do this if we want to do `--hash-algo` everywhere, and not `--algo` for
hash commands.
The new `nix hash convert` is updated. Deprecated new CLI commands are
left as-is (`nix hash path` needs to be redone and is also left as-is).
Good to document these formats separately from commands that happen to
use them.
Eventually I would like this and `builtins.derivation` to refer to a
store section on derivations that is authoritative, but that doesn't yet
exist, and will take some time to make. So I think we're just best off
merging this now as is.
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
This does not yet resolve the coupling between packages and
derivations, but it makes the code more consistent with the
terminology, and it accentuates places where the coupling is
obvious, such as
auto drvPath = packageInfo.queryDrvPath();
if (!drvPath)
throw Error("'%s' is not a derivation", what());
... which isn't wrong, and in my opinion, doesn't even look
wrong, because it just reflects the current logic.
However, I do like that we can now start to see in the code that
this coupling is perhaps a bit arbitrary.
After this rename, we can bring the DerivingPath concept into type
and start to lift this limitation.
Most of this is a `catch SysError` -> `catch SystemError` sed. This
is a rather pure-churn change I would like to get out of the way. **The
intersting part is `src/libutil/error.hh`.**
On Unix, we will only throw the `SysError` concrete class, which has
the same constructors that `SystemError` used to have.
On Windows, we will throw `WinError` *and* `SysError`. `WinError`
(which will be created in a later PR), will use a `DWORD` instead of
`int` error value, and `GetLastError()`, which is the Windows equivalent
of the `errno` machinery. Windows will *also* use `SysError` because
Window's "libc" (MSVCRT) implements the POSIX interface, and we use it
too.
As the docs describe, while we *throw* one of the 3 choices above (2
concrete classes or the alias), we should always *catch* `SystemError`.
This ensures no matter how the implementation changes for Windows (e.g.
between `SysError` and `WinError`) the catching logic stays the same
and stays correct.
Co-Authored-By volth <volth@volth.com>
Co-Authored-By Eugene Butler <eugene@eugene4.com>
This sets up infrastructure in libutil to allow for signing other than
by a secret key in memory. #9076 uses this to implement remote signing.
(Split from that PR to allow reviewing in smaller chunks.)
Co-Authored-By: Raito Bezarius <masterancpp@gmail.com>
The profile manifest is now an object keyed on the name returned by
getNameFromURL() at installation time, instead of an array. This
ensures that the names of profile elements don't change when other
elements are added/removed.
Prior to this change, Nix would prepend every installable to the PATH
list in order to ensure that installables appeared before the current
PATH from the ambient environment.
With this change, all the installables are still prepended to the PATH,
but in the same order as they appear on the command line. This means
that the first of two packages that expose an executable `hello` would
appear in the PATH first, and thus be executed first.
See the test in the prior commit for a more concrete example.
* document `fetchTree`
* display experimental feature note at the top
we have to enable the new `fetchTree` experimental feature to render it
at all. this was a bug introduced when adding that new feature flag.
Co-authored-by: tomberek <tomberek@users.noreply.github.com>
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Silvan Mosberger <github@infinisil.com>
* Factor out the default `MultiCommand` behavior
All the `MultiCommand`s had (nearly) the same behavior when called
without a subcommand.
Factor out this behavior into the `NixMultiCommand` class.
* Display the list of available subcommands when none is specified
Whenever a user runs a command that excepts a subcommand, add the list
of available subcommands to the error message.
* Print the multi-command lists as Markdown lists
This takes more screen real estate, but is also much more readable than
a comma-separated list
This makes for more useful manual table of contents, that displays the
information at a glance.
The `nix help-stores` command is kept as-is, even though it will show up
in the manual with the same information as these pages due to the way it
is written as a "`--help`-style" command. Deciding what to do with that
command is left for a later PR.
This change also lists all store types at the top of the respective overview page.
Co-authored-by: John Ericson <John.Ericson@Obsidian.Systems
- helps navigating the code as it highlights which files are generated
- makes it less error prone when working incrementally
(although this should be just fixed by building out of tree)
This builds on #8817, to add additional UX help for people with existing
muscle memory (or shell history) with --update-input and tries to gently
guide them towards the newly evolved CLI UI.
Co-authored-by: Cole Helbling <cole.e.helbling@outlook.com>
SHELL was inherited from the system environment. This resulted in a new
shell being started, but with SHELL still referring to the system shell
and not the one used by nix-develop.
Applications like make, use SHELL to run commands, which meant that
top-level commands are run inside the nix-develop-shell, but
sub-commands are ran inside the system shell.
This setenv forces SHELL to always be set to the shell used by
nix-develop.
Enables shebang usage of nix shell. All arguments with `#! nix` get
added to the nix invocation. This implementation does NOT set any
additional arguments other than placing the script path itself as the
first argument such that the interpreter can utilize it.
Example below:
```
#!/usr/bin/env nix
#! nix shell --quiet
#! nix nixpkgs#bash
#! nix nixpkgs#shellcheck
#! nix nixpkgs#hello
#! nix --ignore-environment --command bash
# shellcheck shell=bash
set -eu
shellcheck "$0" || exit 1
function main {
hello
echo 0:"$0" 1:"$1" 2:"$2"
}
"$@"
```
fix: include programName usage
EDIT: For posterity I've changed shellwords to shellwords2 in order
not to interfere with other changes during a rebase.
shellwords2 is removed in a later commit. -- roberth
Before it returned a list of JSON objects with store object information,
including the path in each object. Now, it maps the paths to JSON
objects with the metadata sans path.
This matches how `nix derivation show` works.
Quite hillariously, none of our existing functional tests caught this
change to `path-info --json` though they did use it. So just new
functional tests need to be added.
`Store::pathInfoToJSON` was a rather baroque functions, being full of
parameters to support both parsed derivations and `nix path-info`. The
common core of each, a simple `dValidPathInfo::toJSON` function, is
factored out, but the rest of the logic is just duplicated and then
specialized to its use-case (at which point it is no longer that
duplicated).
This keeps the human oriented CLI logic (which is currently unstable)
and the core domain logic (export reference graphs with structured
attrs, which is stable), separate, which I think is better.
All OS and IO operations should be moved out, leaving only some misc
portable pure functions.
This is useful to avoid copious CPP when doing things like Windows and
Emscripten ports.
Newly exposed functions to break cycles:
- `restoreSignals`
- `updateWindowSize`
As I complained in
https://github.com/NixOS/nix/pull/6784#issuecomment-1421777030 (a
comment on the wrong PR, sorry again!), #6693 introduced a second
completions mechanism to fix a bug. Having two completion mechanisms
isn't so nice.
As @thufschmitt also pointed out, it was a bummer to go from `FlakeRef`
to `std::string` when collecting flake refs. Now it is `FlakeRefs`
again.
The underlying issue that sought to work around was that completion of
arguments not at the end can still benefit from the information from
latter arguments.
To fix this better, we rip out that change and simply defer all
completion processing until after all the (regular, already-complete)
arguments have been passed.
In addition, I noticed the original completion logic used some global
variables. I do not like global variables, because even if they save
lines of code, they also obfuscate the architecture of the code.
I got rid of them moved them to a new `RootArgs` class, which now has
`parseCmdline` instead of `Args`. The idea is that we have many argument
parsers from subcommands and what-not, but only one root args that owns
the other per actual parsing invocation. The state that was global is
now part of the root args instead.
This did, admittedly, add a bunch of new code. And I do feel bad about
that. So I went and added a lot of API docs to try to at least make the
current state of things clear to the next person.
--
This is needed for RFC 134 (tracking issue #7868). It was very hard to
modularize `Installable` parsing when there were two completion
arguments. I wouldn't go as far as to say it is *easy* now, but at least
it is less hard (and the completions test finally passed).
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
hashBase is ambiguous, since it's not about the digital bases, but about
the format of hashes. Base16, Base32 and Base64 are all character maps
for binary encoding.
Rename the enum Base to HashFormat.
Rename variables of type HashFormat from [hash]Base to hashFormat,
including CmdHashBase::hashFormat and CmdToBase::hashFormat.
MemoryInputAccessor is an in-memory virtual filesystem that returns
files like <nix/fetchurl.nix>. This removes the need for special hacks
to handle those files.
Two changes:
* The (probably unintentional) hack to handle paths as tarballs has
been removed. This is almost certainly not what users expect and is
inconsistent with flakeref handling everywhere else.
* The hack to support scp-style Git URLs has been moved to the Git
fetcher, so it's now supported not just by fetchTree but by flake
inputs.
the `term` output mode leaves inline HTML around verbatim, while `nroff`
mode (used for `man` pages) does not.
the correct solution would be to pre-render all output with a more
benign tool so we have less liabilities in our own code, but this has to
do for now.
In #4770 I implemented proper `nix-shell(1)` support for derivations
using `__structuredAttrs = true;`. Back then we decided to introduce two
new environment variables, `NIX_ATTRS_SH_FILE` for `.attrs.sh` and
`NIX_ATTRS_JSON_FILE` for `.attrs.json`. This was to avoid having to
copy these files to `$NIX_BUILD_TOP` in a `nix-shell(1)` session which
effectively meant copying these files to the project dir without
cleaning up afterwords[1].
On last NixCon I resumed hacking on `__structuredAttrs = true;` by
default for `nixpkgs` with a few other folks and getting back to it,
I identified a few problems with the how it's used in `nixpkgs`:
* A lot of builders in `nixpkgs` don't care about the env vars and
assume that `.attrs.sh` and `.attrs.json` are in `$NIX_BUILD_TOP`.
The sole reason why this works is that `nix-shell(1)` sources
the contents of `.attrs.sh` and then sources `$stdenv/setup` if it
exists. This may not be pretty, but it mostly works. One notable
difference when using nixpkgs' stdenv as of now is however that
`$__structuredAttrs` is set to `1` on regular builds, but set to
an empty string in a shell session.
Also, `.attrs.json` cannot be used in shell sessions because
it can only be accessed by `$NIX_ATTRS_JSON_FILE` and not by
`$NIX_BUILD_TOP/.attrs.json`.
I considered changing Nix to be compatible with what nixpkgs
effectively does, but then we'd have to either move $NIX_BUILD_TOP for
shell sessions to a temporary location (and thus breaking a lot of
assumptions) or we'd reintroduce all the problems we solved back then
by using these two env vars.
This is partly because I didn't document these variables back
then (mea culpa), so I decided to drop all mentions of
`.attrs.{json,sh}` in the manual and only refer to `$NIX_ATTRS_SH_FILE`
and `$NIX_ATTRS_JSON_FILE`. The same applies to all our integration tests.
Theoretically we could deprecated using `"$NIX_BUILD_TOP"/.attrs.sh` in
the future now.
* `nix develop` and `nix print-dev-env` don't support this environment
variable at all even though they're supposed to be part of the replacement
for `nix-shell` - for the drv debugging part to be precise.
This isn't a big deal for the vast majority of derivations, i.e.
derivations relying on nixpkgs' `stdenv` wiring things together
properly. This is because `nix develop` effectively "clones" the
derivation and replaces the builder with a script that dumps all of
the environment, shell variables, functions etc, so the state of
structured attrs being "sourced" is transmitted into the dev shell and
most of the time you don't need to worry about `.attrs.sh` not
existing because the shell is correctly configured and the
if [ -e .attrs.sh ]; then source .attrs.sh; fi
is simply omitted.
However, this will break when having a derivation that reads e.g. from
`.attrs.json` like
with import <nixpkgs> {};
runCommand "foo" { __structuredAttrs = true; foo.bar = 23; } ''
cat $NIX_ATTRS_JSON_FILE # doesn't work because it points to /build/.attrs.json
''
To work around this I employed a similar approach as it exists for
`nix-shell`: the `NIX_ATTRS_{JSON,SH}_FILE` vars are replaced with
temporary locations.
The contents of `.attrs.sh` and `.attrs.json` are now written into the
JSON by `get-env.sh`, the builder that `nix develop` injects into the
derivation it's debugging. So finally the exact file contents are
present and exported by `nix develop`.
I also made `.attrs.json` a JSON string in the JSON printed by
`get-env.sh` on purpose because then it's not necessary to serialize
the object structure again. `nix develop` only needs the JSON
as string because it's only written into the temporary file.
I'm not entirely sure if it makes sense to also use a temporary
location for `nix print-dev-env` (rather than just skipping the
rewrite in there), but this would probably break certain cases where
it's relied upon `$NIX_ATTRS_SH_FILE` to exist (prime example are the
`nix print-dev-env` test-cases I wrote in this patch using
`tests/shell.nix`, these would fail because the env var exists, but it
cannot read from it).
[1] https://github.com/NixOS/nix/pull/4770#issuecomment-836799719
The `-c` flag belongs to `sh` not `nix shell`. As it stands, the command errors with:
```
$ nix shell nixpkgs#gnumake --command sh --command "cd src && make"
sh: --command: invalid option
```
https://github.com/NixOS/nix/pull/8276 was good for readability, but it missed this since that PR used a find/replace script.
We use the same nested map representation we used for goals, again in
order to save space. We might someday want to combine with `inputDrvs`,
by doing `V = bool` instead of `V = std::set<OutputName>`, but we are
not doing that yet for sake of a smaller diff.
The ATerm format for Derivations also needs to be extended, in addition
to the in-memory format. To accomodate this, we added a new basic
versioning scheme, so old versions of Nix will get nice errors. (And
going forward, if the ATerm format changes again the errors will be even
better.)
`parsedStrings`, an internal function used as part of parsing
derivations in A-Term format, used to consume the final `]` but expect
the initial `[` to already be consumed. This made for what looked like
unbalanced brackets at callsites, which was confusing. Now it consumes
both which is hopefully less confusing.
As part of testing, we also created a unit test for the A-Term format for
regular non-experimental derivations too.
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
Apply suggestions from code review
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Types converted:
- `NixStringContextElem`
- `OutputsSpec`
- `ExtendedOutputsSpec`
- `DerivationOutput`
- `DerivationType`
Existing ones mostly conforming the pattern cleaned up:
- `ContentAddressMethod`
- `ContentAddressWithReferences`
The `DerivationGoal::derivationType` field had a bogus initialization,
now caught, so I made it `std::optional`. I think #8829 can make it
non-optional again because it will ensure we always have the derivation
when we construct a `DerivationGoal`.
See that issue (#7479) for details on the general goal.
`git grep 'Raw::Raw'` indicates the two types I didn't yet convert
`DerivedPath` and `BuiltPath` (and their `Single` variants) . This is
because @roberth and I (can't find issue right now...) plan on reworking
them somewhat, so I didn't want to churn them more just yet.
Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
In the Nix language, given a drv path, we should be able to construct
another string referencing to one of its output. We can do this today
with `(import drvPath).output`, but this only works for derivations we
already have.
With dynamic derivations, however, that doesn't work well because the
`drvPath` isn't yet built: importing it like would need to trigger IFD,
when the whole point of this feature is to do "dynamic build graph"
without IFD!
Instead, what we want to do is create a placeholder value with the right
string context to refer to the output of the as-yet unbuilt derivation.
A new primop in the language, analogous to `builtins.placeholder` can be
used to create one. This will achieve all the right properties. The
placeholder machinery also will match out the `outPath` attribute for CA
derivations works.
In 60b7121d2c we added that type of
placeholder, and the derived path and string holder changes necessary to
support it. Then in the previous commit we cleaned up the code
(inspiration finally hit me!) to deduplicate the code and expose exactly
what we need. Now, we can wire up the primop trivally!
Part of RFC 92: dynamic derivations (tracking issue #6316)
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
We want to be able to write down `foo.drv^bar.drv^baz`:
`foo.drv^bar.drv` is the dynamic derivation (since it is itself a
derivation output, `bar.drv` from `foo.drv`).
To that end, we create `Single{Derivation,BuiltPath}` types, that are
very similar except instead of having multiple outputs (in a set or
map), they have a single one. This is for everything to the left of the
rightmost `^`.
`NixStringContextElem` has an analogous change, and now can reuse
`SingleDerivedPath` at the top level. In fact, if we ever get rid of
`DrvDeep`, `NixStringContextElem` could be replaced with
`SingleDerivedPath` entirely!
Important note: some JSON formats have changed.
We already can *produce* dynamic derivations, but we can't refer to them
directly. Today, we can merely express building or example at the top
imperatively over time by building `foo.drv^bar.drv`, and then with a
second nix invocation doing `<result-from-first>^baz`, but this is not
declarative. The ethos of Nix of being able to write down the full plan
everything you want to do, and then execute than plan with a single
command, and for that we need the new inductive form of these types.
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>