Instead of having a bunch of optional fields, have a few subclasses
which can have mandatory fields.
Additionally, the new `getExtraPathInfo`, and `nixpkgsFlakeRef`, are
moved to `InstallableValue`.
I did these things because https://github.com/NixOS/rfcs/pull/134 ; with
these things moved to `InstallableValue`, the base `Installable` no
longer depends on libexpr! This is a major step towards that.
Also, add a bunch of doc comments for sake of the internal API docs.
Already, we had classes like `BuiltPathsCommand` and `StorePathsCommand`
which provided alternative `run` virtual functions providing the
implementation with more arguments. This was a very nice and easy way to
make writing command; just fill in the virtual functions and it is
fairly clear what to do.
However, exception to this pattern were `Installable{,s}Command`. These
two classes instead just had a field where the installables would be
stored, and various side-effecting `prepare` and `load` machinery too
fill them in. Command would wish out those fields.
This isn't so clear to use.
What this commit does is make those command classes like the others,
with richer `run` functions.
Not only does this restore the pattern making commands easier to write,
it has a number of other benefits:
- `prepare` and `load` are gone entirely! One command just hands just
hands off to the next.
- `useDefaultInstallables` because `defaultInstallables`. This takes
over `prepare` for the one case that needs it, and provides enough
flexiblity to handle `nix repl`'s idiosyncratic migration.
- We can use `ref` instead of `std::shared_ptr`. The former must be
initialized (so it is like Rust's `Box` rather than `Option<Box>`,
This expresses the invariant that the installable are in fact
initialized much better.
This is possible because since we just have local variables not
fields, we can stop worrying about the not-yet-initialized case.
- Fewer lines of code! (Finally I have a large refactor that makes the
number go down not up...)
- `nix repl` is now implemented in a clearer way.
The last item deserves further mention. `nix repl` is not like the other
installable commands because instead working from once-loaded
installables, it needs to be able to load them again and again.
To properly support this, we make a new superclass
`RawInstallablesCommand`. This class has the argument parsing and
completion logic, but does *not* hand off parsed installables but
instead just the raw string arguments.
This is exactly what `nix repl` needs, and allows us to instead of
having the logic awkwardly split between `prepare`,
`useDefaultInstallables,` and `load`, have everything right next to each
other. I think this will enable future simplifications of that argument
defaulting logic, but I am saving those for a future PR --- best to keep
code motion and more complicated boolean expression rewriting separate
steps.
The "diagnostic ignored `-Woverloaded-virtual`" pragma helps because C++
doesn't like our many `run` methods. In our case, we don't mind the
shadowing it all --- it is *intentional* that the derived class only
provides a `run` method, and doesn't call any of the overridden `run`
methods.
Helps with https://github.com/NixOS/rfcs/pull/134
This makes 'nix develop' set the Linux personality in the same way
that the actual build does, allowing a command like 'nix develop
nix#devShells.i686-linux.default' on x86_64-linux to work correctly.
Stdenv sets this to a bash that doesn't have readline/completion
support, so running 'nix (develop|shell)' inside a 'nix develop' gives
you a crippled shell. So let's just ignore the derivation's $SHELL.
This could break interactive use of build phases that use $SHELL, but
they appear to be fairly rare.
Rather than having four different but very similar types of hashes, make
only one, with a tag indicating whether it corresponds to a regular of
deferred derivation.
This implies a slight logical change: The original Nix+multiple-outputs
model assumed only one hash-modulo per derivation. Adding
multiple-outputs CA derivations changed this as these have one
hash-modulo per output. This change is now treating each derivation as
having one hash modulo per output.
This obviously means that we internally loose the guaranty that
all the outputs of input-addressed derivations have the same hash
modulo. But it turns out that it doesn’t matter because there’s nothing
in the code taking advantage of that fact (and it probably shouldn’t
anyways).
The upside is that it is now much easier to work with these hashes, and
we can get rid of a lot of useless `std::visit{ overloaded`.
Co-authored-by: John Ericson <John.Ericson@Obsidian.Systems>
1. `DerivationOutput` now as the `std::variant` as a base class. And the
variants are given hierarchical names under `DerivationOutput`.
In 8e0d0689be @matthewbauer and I
didn't know a better idiom, and so we made it a field. But this sort
of "newtype" is anoying for literals downstream.
Since then we leaned the base class, inherit the constructors trick,
e.g. used in `DerivedPath`. Switching to use that makes this more
ergonomic, and consistent.
2. `store-api.hh` and `derivations.hh` are now independent.
In bcde5456cc I swapped the dependency,
but I now know it is better to just keep on using incomplete types as
much as possible for faster compilation and good separation of
concerns.
This changes was taken from dynamic derivation (#4628). It` somewhat
undoes the refactors I first did for floating CA derivations, as the
benefit of hindsight + requirements of dynamic derivations made me
reconsider some things.
They aren't to consequential, but I figured they might be good to land
first, before the more profound changes @thufschmitt has in the works.
This was already accidentally disabled in ba87b08. It also no longer
appears to be beneficial, and in fact slow things down, e.g. when
evaluating a NixOS system configuration:
elapsed time: median = 3.8170 mean = 3.8202 stddev = 0.0195 min = 3.7894 max = 3.8600 [rejected, p=0.00000, Δ=0.36929±0.02513]
Rather than having them plain strings scattered through the whole
codebase, create an enum containing all the known experimental features.
This means that
- Nix can now `warn` when an unkwown experimental feature is passed
(making it much nicer to spot typos and spot deprecated features)
- It’s now easy to remove a feature altogether (once the feature isn’t
experimental anymore or is dropped) by just removing the field for the
enum and letting the compiler point us to all the now invalid usages
of it.
It currently fails with the following error:
error: flake 'git+file://…' does not provide attribute 'devShells.x86_64-linuxhaskell', 'packages.x86_64-linux.haskell', 'legacyPackages.x86_64-linux.haskell' or 'haskell'
For git+file and path flakes, chdir to flake directory so that phases
that expect to be in the flake directory can run
Fixes https://github.com/NixOS/nix/issues/3976
With this, we don't have to copy the entire .drv closure to the
destination store ahead of time (or at all). Instead, buildPaths()
reads .drv files from the eval store and copies inputSrcs to the
destination store if it needs to build a derivation.
Issue #5025.
In particular, this now works:
$ nix path-info --eval-store auto --store https://cache.nixos.org nixpkgs#hello
Previously this would fail as it would try to upload the hello .drv to
cache.nixos.org. Now the .drv is instantiated in the local store, and
then we check for the existence of the outputs in cache.nixos.org.
`nix develop` is getting bash from an (assumed existing) `nixpkgs`
flake. However, when doing so, it reuses the `lockFlags` passed to the
current flake, including the `--input-overrides` and `--input-update`
which generally don’t make sense anymore at that point (and trigger a
warning because of that)
Clear these overrides before getting the nixpkgs flake to get rid of the
warning.
~/.bashrc should be sourced first in the rc script so that PATH &
other env vars give precedence over the bashrc PATH.
Also, in my bashrc I alias rm as:
alias rm='rm -Iv'
To avoid running this alias (which shows ‘removed '/tmp/nix-shell.*'),
we can just prefix rm with command.