#pragma once ///@file #include #include #include #include "symbol-table.hh" #include "value/context.hh" #include "source-path.hh" #include "print-options.hh" #if HAVE_BOEHMGC #include #endif #include namespace nix { struct Value; class BindingsBuilder; typedef enum { tUninitialized = 0, tInt = 1, tBool, tString, tPath, tNull, tAttrs, tList1, tList2, tListN, tThunk, tApp, tLambda, tPrimOp, tPrimOpApp, tExternal, tFloat } InternalType; /** * This type abstracts over all actual value types in the language, * grouping together implementation details like tList*, different function * types, and types in non-normal form (so thunks and co.) */ typedef enum { nThunk, nInt, nFloat, nBool, nString, nPath, nNull, nAttrs, nList, nFunction, nExternal } ValueType; class Bindings; struct Env; struct Expr; struct ExprLambda; struct ExprBlackHole; struct PrimOp; class Symbol; class PosIdx; struct Pos; class StorePath; class EvalState; class XMLWriter; class Printer; typedef int64_t NixInt; typedef double NixFloat; /** * External values must descend from ExternalValueBase, so that * type-agnostic nix functions (e.g. showType) can be implemented */ class ExternalValueBase { friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); friend class Printer; protected: /** * Print out the value */ virtual std::ostream & print(std::ostream & str) const = 0; public: /** * Return a simple string describing the type */ virtual std::string showType() const = 0; /** * Return a string to be used in builtins.typeOf */ virtual std::string typeOf() const = 0; /** * Coerce the value to a string. Defaults to uncoercable, i.e. throws an * error. */ virtual std::string coerceToString(EvalState & state, const PosIdx & pos, NixStringContext & context, bool copyMore, bool copyToStore) const; /** * Compare to another value of the same type. Defaults to uncomparable, * i.e. always false. */ virtual bool operator ==(const ExternalValueBase & b) const; /** * Print the value as JSON. Defaults to unconvertable, i.e. throws an error */ virtual nlohmann::json printValueAsJSON(EvalState & state, bool strict, NixStringContext & context, bool copyToStore = true) const; /** * Print the value as XML. Defaults to unevaluated */ virtual void printValueAsXML(EvalState & state, bool strict, bool location, XMLWriter & doc, NixStringContext & context, PathSet & drvsSeen, const PosIdx pos) const; virtual ~ExternalValueBase() { }; }; std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); class ListBuilder { const size_t size; Value * inlineElems[2] = {nullptr, nullptr}; public: Value * * elems; ListBuilder(EvalState & state, size_t size); ListBuilder(ListBuilder && x) : size(x.size) , inlineElems{x.inlineElems[0], x.inlineElems[1]} , elems(size <= 2 ? inlineElems : x.elems) { } Value * & operator [](size_t n) { return elems[n]; } typedef Value * * iterator; iterator begin() { return &elems[0]; } iterator end() { return &elems[size]; } friend struct Value; }; struct Value { private: InternalType internalType = tUninitialized; friend std::string showType(const Value & v); public: void print(EvalState &state, std::ostream &str, PrintOptions options = PrintOptions {}); // Functions needed to distinguish the type // These should be removed eventually, by putting the functionality that's // needed by callers into methods of this type // type() == nThunk inline bool isThunk() const { return internalType == tThunk; }; inline bool isApp() const { return internalType == tApp; }; inline bool isBlackhole() const; // type() == nFunction inline bool isLambda() const { return internalType == tLambda; }; inline bool isPrimOp() const { return internalType == tPrimOp; }; inline bool isPrimOpApp() const { return internalType == tPrimOpApp; }; /** * Strings in the evaluator carry a so-called `context` which * is a list of strings representing store paths. This is to * allow users to write things like * * "--with-freetype2-library=" + freetype + "/lib" * * where `freetype` is a derivation (or a source to be copied * to the store). If we just concatenated the strings without * keeping track of the referenced store paths, then if the * string is used as a derivation attribute, the derivation * will not have the correct dependencies in its inputDrvs and * inputSrcs. * The semantics of the context is as follows: when a string * with context C is used as a derivation attribute, then the * derivations in C will be added to the inputDrvs of the * derivation, and the other store paths in C will be added to * the inputSrcs of the derivations. * For canonicity, the store paths should be in sorted order. */ struct StringWithContext { const char * c_str; const char * * context; // must be in sorted order }; struct Path { SourceAccessor * accessor; const char * path; }; struct ClosureThunk { Env * env; Expr * expr; }; struct FunctionApplicationThunk { Value * left, * right; }; struct Lambda { Env * env; ExprLambda * fun; }; using Payload = union { NixInt integer; bool boolean; StringWithContext string; Path path; Bindings * attrs; struct { size_t size; Value * const * elems; } bigList; Value * smallList[2]; ClosureThunk thunk; FunctionApplicationThunk app; Lambda lambda; PrimOp * primOp; FunctionApplicationThunk primOpApp; ExternalValueBase * external; NixFloat fpoint; }; Payload payload; /** * Returns the normal type of a Value. This only returns nThunk if * the Value hasn't been forceValue'd * * @param invalidIsThunk Instead of aborting an an invalid (probably * 0, so uninitialized) internal type, return `nThunk`. */ inline ValueType type(bool invalidIsThunk = false) const { switch (internalType) { case tUninitialized: break; case tInt: return nInt; case tBool: return nBool; case tString: return nString; case tPath: return nPath; case tNull: return nNull; case tAttrs: return nAttrs; case tList1: case tList2: case tListN: return nList; case tLambda: case tPrimOp: case tPrimOpApp: return nFunction; case tExternal: return nExternal; case tFloat: return nFloat; case tThunk: case tApp: return nThunk; } if (invalidIsThunk) return nThunk; else abort(); } inline void finishValue(InternalType newType, Payload newPayload) { payload = newPayload; internalType = newType; } /** * A value becomes valid when it is initialized. We don't use this * in the evaluator; only in the bindings, where the slight extra * cost is warranted because of inexperienced callers. */ inline bool isValid() const { return internalType != tUninitialized; } inline void mkInt(NixInt n) { finishValue(tInt, { .integer = n }); } inline void mkBool(bool b) { finishValue(tBool, { .boolean = b }); } inline void mkString(const char * s, const char * * context = 0) { finishValue(tString, { .string = { .c_str = s, .context = context } }); } void mkString(std::string_view s); void mkString(std::string_view s, const NixStringContext & context); void mkStringMove(const char * s, const NixStringContext & context); inline void mkString(const Symbol & s) { mkString(((const std::string &) s).c_str()); } void mkPath(const SourcePath & path); void mkPath(std::string_view path); inline void mkPath(SourceAccessor * accessor, const char * path) { finishValue(tPath, { .path = { .accessor = accessor, .path = path } }); } inline void mkNull() { finishValue(tNull, {}); } inline void mkAttrs(Bindings * a) { finishValue(tAttrs, { .attrs = a }); } Value & mkAttrs(BindingsBuilder & bindings); void mkList(const ListBuilder & builder) { if (builder.size == 1) finishValue(tList1, { .smallList = { builder.inlineElems[0] } }); else if (builder.size == 2) finishValue(tList2, { .smallList = { builder.inlineElems[0], builder.inlineElems[1] } }); else finishValue(tListN, { .bigList = { .size = builder.size, .elems = builder.elems } }); } inline void mkThunk(Env * e, Expr * ex) { finishValue(tThunk, { .thunk = { .env = e, .expr = ex } }); } inline void mkApp(Value * l, Value * r) { finishValue(tApp, { .app = { .left = l, .right = r } }); } inline void mkLambda(Env * e, ExprLambda * f) { finishValue(tLambda, { .lambda = { .env = e, .fun = f } }); } inline void mkBlackhole(); void mkPrimOp(PrimOp * p); inline void mkPrimOpApp(Value * l, Value * r) { finishValue(tPrimOpApp, { .primOpApp = { .left = l, .right = r } }); } /** * For a `tPrimOpApp` value, get the original `PrimOp` value. */ const PrimOp * primOpAppPrimOp() const; inline void mkExternal(ExternalValueBase * e) { finishValue(tExternal, { .external = e }); } inline void mkFloat(NixFloat n) { finishValue(tFloat, { .fpoint = n }); } bool isList() const { return internalType == tList1 || internalType == tList2 || internalType == tListN; } Value * const * listElems() { return internalType == tList1 || internalType == tList2 ? payload.smallList : payload.bigList.elems; } std::span listItems() const { assert(isList()); return std::span(listElems(), listSize()); } Value * const * listElems() const { return internalType == tList1 || internalType == tList2 ? payload.smallList : payload.bigList.elems; } size_t listSize() const { return internalType == tList1 ? 1 : internalType == tList2 ? 2 : payload.bigList.size; } PosIdx determinePos(const PosIdx pos) const; /** * Check whether forcing this value requires a trivial amount of * computation. In particular, function applications are * non-trivial. */ bool isTrivial() const; SourcePath path() const { assert(internalType == tPath); return SourcePath( ref(payload.path.accessor->shared_from_this()), CanonPath(CanonPath::unchecked_t(), payload.path.path)); } std::string_view string_view() const { assert(internalType == tString); return std::string_view(payload.string.c_str); } const char * c_str() const { assert(internalType == tString); return payload.string.c_str; } const char * * context() const { return payload.string.context; } ExternalValueBase * external() const { return payload.external; } const Bindings * attrs() const { return payload.attrs; } const PrimOp * primOp() const { return payload.primOp; } bool boolean() const { return payload.boolean; } NixInt integer() const { return payload.integer; } NixFloat fpoint() const { return payload.fpoint; } }; extern ExprBlackHole eBlackHole; bool Value::isBlackhole() const { return internalType == tThunk && payload.thunk.expr == (Expr*) &eBlackHole; } void Value::mkBlackhole() { mkThunk(nullptr, (Expr *) &eBlackHole); } #if HAVE_BOEHMGC typedef std::vector> ValueVector; typedef std::map, traceable_allocator>> ValueMap; typedef std::map, traceable_allocator>> ValueVectorMap; #else typedef std::vector ValueVector; typedef std::map ValueMap; typedef std::map ValueVectorMap; #endif /** * A value allocated in traceable memory. */ typedef std::shared_ptr RootValue; RootValue allocRootValue(Value * v); }