nix-super/src/cpptoml/cpptoml.h
2018-07-03 18:39:36 +02:00

3457 lines
88 KiB
C++

/**
* @file cpptoml.h
* @author Chase Geigle
* @date May 2013
*/
#ifndef _CPPTOML_H_
#define _CPPTOML_H_
#include <algorithm>
#include <cassert>
#include <clocale>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <map>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#if __cplusplus > 201103L
#define CPPTOML_DEPRECATED(reason) [[deprecated(reason)]]
#elif defined(__clang__)
#define CPPTOML_DEPRECATED(reason) __attribute__((deprecated(reason)))
#elif defined(__GNUG__)
#define CPPTOML_DEPRECATED(reason) __attribute__((deprecated))
#elif defined(_MSC_VER)
#if _MSC_VER < 1910
#define CPPTOML_DEPRECATED(reason) __declspec(deprecated)
#else
#define CPPTOML_DEPRECATED(reason) [[deprecated(reason)]]
#endif
#endif
namespace cpptoml
{
class writer; // forward declaration
class base; // forward declaration
#if defined(CPPTOML_USE_MAP)
// a std::map will ensure that entries a sorted, albeit at a slight
// performance penalty relative to the (default) unordered_map
using string_to_base_map = std::map<std::string, std::shared_ptr<base>>;
#else
// by default an unordered_map is used for best performance as the
// toml specification does not require entries to be sorted
using string_to_base_map
= std::unordered_map<std::string, std::shared_ptr<base>>;
#endif
// if defined, `base` will retain type information in form of an enum class
// such that static_cast can be used instead of dynamic_cast
// #define CPPTOML_NO_RTTI
template <class T>
class option
{
public:
option() : empty_{true}
{
// nothing
}
option(T value) : empty_{false}, value_(std::move(value))
{
// nothing
}
explicit operator bool() const
{
return !empty_;
}
const T& operator*() const
{
return value_;
}
const T* operator->() const
{
return &value_;
}
const T& value_or(const T& alternative) const
{
if (!empty_)
return value_;
return alternative;
}
private:
bool empty_;
T value_;
};
struct local_date
{
int year = 0;
int month = 0;
int day = 0;
};
struct local_time
{
int hour = 0;
int minute = 0;
int second = 0;
int microsecond = 0;
};
struct zone_offset
{
int hour_offset = 0;
int minute_offset = 0;
};
struct local_datetime : local_date, local_time
{
};
struct offset_datetime : local_datetime, zone_offset
{
static inline struct offset_datetime from_zoned(const struct tm& t)
{
offset_datetime dt;
dt.year = t.tm_year + 1900;
dt.month = t.tm_mon + 1;
dt.day = t.tm_mday;
dt.hour = t.tm_hour;
dt.minute = t.tm_min;
dt.second = t.tm_sec;
char buf[16];
strftime(buf, 16, "%z", &t);
int offset = std::stoi(buf);
dt.hour_offset = offset / 100;
dt.minute_offset = offset % 100;
return dt;
}
CPPTOML_DEPRECATED("from_local has been renamed to from_zoned")
static inline struct offset_datetime from_local(const struct tm& t)
{
return from_zoned(t);
}
static inline struct offset_datetime from_utc(const struct tm& t)
{
offset_datetime dt;
dt.year = t.tm_year + 1900;
dt.month = t.tm_mon + 1;
dt.day = t.tm_mday;
dt.hour = t.tm_hour;
dt.minute = t.tm_min;
dt.second = t.tm_sec;
return dt;
}
};
CPPTOML_DEPRECATED("datetime has been renamed to offset_datetime")
typedef offset_datetime datetime;
class fill_guard
{
public:
fill_guard(std::ostream& os) : os_(os), fill_{os.fill()}
{
// nothing
}
~fill_guard()
{
os_.fill(fill_);
}
private:
std::ostream& os_;
std::ostream::char_type fill_;
};
inline std::ostream& operator<<(std::ostream& os, const local_date& dt)
{
fill_guard g{os};
os.fill('0');
using std::setw;
os << setw(4) << dt.year << "-" << setw(2) << dt.month << "-" << setw(2)
<< dt.day;
return os;
}
inline std::ostream& operator<<(std::ostream& os, const local_time& ltime)
{
fill_guard g{os};
os.fill('0');
using std::setw;
os << setw(2) << ltime.hour << ":" << setw(2) << ltime.minute << ":"
<< setw(2) << ltime.second;
if (ltime.microsecond > 0)
{
os << ".";
int power = 100000;
for (int curr_us = ltime.microsecond; curr_us; power /= 10)
{
auto num = curr_us / power;
os << num;
curr_us -= num * power;
}
}
return os;
}
inline std::ostream& operator<<(std::ostream& os, const zone_offset& zo)
{
fill_guard g{os};
os.fill('0');
using std::setw;
if (zo.hour_offset != 0 || zo.minute_offset != 0)
{
if (zo.hour_offset > 0)
{
os << "+";
}
else
{
os << "-";
}
os << setw(2) << std::abs(zo.hour_offset) << ":" << setw(2)
<< std::abs(zo.minute_offset);
}
else
{
os << "Z";
}
return os;
}
inline std::ostream& operator<<(std::ostream& os, const local_datetime& dt)
{
return os << static_cast<const local_date&>(dt) << "T"
<< static_cast<const local_time&>(dt);
}
inline std::ostream& operator<<(std::ostream& os, const offset_datetime& dt)
{
return os << static_cast<const local_datetime&>(dt)
<< static_cast<const zone_offset&>(dt);
}
template <class T, class... Ts>
struct is_one_of;
template <class T, class V>
struct is_one_of<T, V> : std::is_same<T, V>
{
};
template <class T, class V, class... Ts>
struct is_one_of<T, V, Ts...>
{
const static bool value
= std::is_same<T, V>::value || is_one_of<T, Ts...>::value;
};
template <class T>
class value;
template <class T>
struct valid_value
: is_one_of<T, std::string, int64_t, double, bool, local_date, local_time,
local_datetime, offset_datetime>
{
};
template <class T, class Enable = void>
struct value_traits;
template <class T>
struct valid_value_or_string_convertible
{
const static bool value = valid_value<typename std::decay<T>::type>::value
|| std::is_convertible<T, std::string>::value;
};
template <class T>
struct value_traits<T, typename std::
enable_if<valid_value_or_string_convertible<T>::
value>::type>
{
using value_type = typename std::
conditional<valid_value<typename std::decay<T>::type>::value,
typename std::decay<T>::type, std::string>::type;
using type = value<value_type>;
static value_type construct(T&& val)
{
return value_type(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_floating_point<
typename std::decay<T>::type>::value>::
type>
{
using value_type = typename std::decay<T>::type;
using type = value<double>;
static value_type construct(T&& val)
{
return value_type(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_signed<typename std::decay<T>::
type>::value>::type>
{
using value_type = int64_t;
using type = value<int64_t>;
static value_type construct(T&& val)
{
if (val < (std::numeric_limits<int64_t>::min)())
throw std::underflow_error{"constructed value cannot be "
"represented by a 64-bit signed "
"integer"};
if (val > (std::numeric_limits<int64_t>::max)())
throw std::overflow_error{"constructed value cannot be represented "
"by a 64-bit signed integer"};
return static_cast<int64_t>(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_unsigned<typename std::decay<T>::
type>::value>::type>
{
using value_type = int64_t;
using type = value<int64_t>;
static value_type construct(T&& val)
{
if (val > static_cast<uint64_t>((std::numeric_limits<int64_t>::max)()))
throw std::overflow_error{"constructed value cannot be represented "
"by a 64-bit signed integer"};
return static_cast<int64_t>(val);
}
};
class array;
class table;
class table_array;
template <class T>
struct array_of_trait
{
using return_type = option<std::vector<T>>;
};
template <>
struct array_of_trait<array>
{
using return_type = option<std::vector<std::shared_ptr<array>>>;
};
template <class T>
inline std::shared_ptr<typename value_traits<T>::type> make_value(T&& val);
inline std::shared_ptr<array> make_array();
template <class T>
inline std::shared_ptr<T> make_element();
inline std::shared_ptr<table> make_table();
inline std::shared_ptr<table_array> make_table_array();
#if defined(CPPTOML_NO_RTTI)
/// Base type used to store underlying data type explicitly if RTTI is disabled
enum class base_type
{
NONE,
STRING,
LOCAL_TIME,
LOCAL_DATE,
LOCAL_DATETIME,
OFFSET_DATETIME,
INT,
FLOAT,
BOOL,
TABLE,
ARRAY,
TABLE_ARRAY
};
/// Type traits class to convert C++ types to enum member
template <class T>
struct base_type_traits;
template <>
struct base_type_traits<std::string>
{
static const base_type type = base_type::STRING;
};
template <>
struct base_type_traits<local_time>
{
static const base_type type = base_type::LOCAL_TIME;
};
template <>
struct base_type_traits<local_date>
{
static const base_type type = base_type::LOCAL_DATE;
};
template <>
struct base_type_traits<local_datetime>
{
static const base_type type = base_type::LOCAL_DATETIME;
};
template <>
struct base_type_traits<offset_datetime>
{
static const base_type type = base_type::OFFSET_DATETIME;
};
template <>
struct base_type_traits<int64_t>
{
static const base_type type = base_type::INT;
};
template <>
struct base_type_traits<double>
{
static const base_type type = base_type::FLOAT;
};
template <>
struct base_type_traits<bool>
{
static const base_type type = base_type::BOOL;
};
template <>
struct base_type_traits<table>
{
static const base_type type = base_type::TABLE;
};
template <>
struct base_type_traits<array>
{
static const base_type type = base_type::ARRAY;
};
template <>
struct base_type_traits<table_array>
{
static const base_type type = base_type::TABLE_ARRAY;
};
#endif
/**
* A generic base TOML value used for type erasure.
*/
class base : public std::enable_shared_from_this<base>
{
public:
virtual ~base() = default;
virtual std::shared_ptr<base> clone() const = 0;
/**
* Determines if the given TOML element is a value.
*/
virtual bool is_value() const
{
return false;
}
/**
* Determines if the given TOML element is a table.
*/
virtual bool is_table() const
{
return false;
}
/**
* Converts the TOML element into a table.
*/
std::shared_ptr<table> as_table()
{
if (is_table())
return std::static_pointer_cast<table>(shared_from_this());
return nullptr;
}
/**
* Determines if the TOML element is an array of "leaf" elements.
*/
virtual bool is_array() const
{
return false;
}
/**
* Converts the TOML element to an array.
*/
std::shared_ptr<array> as_array()
{
if (is_array())
return std::static_pointer_cast<array>(shared_from_this());
return nullptr;
}
/**
* Determines if the given TOML element is an array of tables.
*/
virtual bool is_table_array() const
{
return false;
}
/**
* Converts the TOML element into a table array.
*/
std::shared_ptr<table_array> as_table_array()
{
if (is_table_array())
return std::static_pointer_cast<table_array>(shared_from_this());
return nullptr;
}
/**
* Attempts to coerce the TOML element into a concrete TOML value
* of type T.
*/
template <class T>
std::shared_ptr<value<T>> as();
template <class T>
std::shared_ptr<const value<T>> as() const;
template <class Visitor, class... Args>
void accept(Visitor&& visitor, Args&&... args) const;
#if defined(CPPTOML_NO_RTTI)
base_type type() const
{
return type_;
}
protected:
base(const base_type t) : type_(t)
{
// nothing
}
private:
const base_type type_ = base_type::NONE;
#else
protected:
base()
{
// nothing
}
#endif
};
/**
* A concrete TOML value representing the "leaves" of the "tree".
*/
template <class T>
class value : public base
{
struct make_shared_enabler
{
// nothing; this is a private key accessible only to friends
};
template <class U>
friend std::shared_ptr<typename value_traits<U>::type>
cpptoml::make_value(U&& val);
public:
static_assert(valid_value<T>::value, "invalid value type");
std::shared_ptr<base> clone() const override;
value(const make_shared_enabler&, const T& val) : value(val)
{
// nothing; note that users cannot actually invoke this function
// because they lack access to the make_shared_enabler.
}
bool is_value() const override
{
return true;
}
/**
* Gets the data associated with this value.
*/
T& get()
{
return data_;
}
/**
* Gets the data associated with this value. Const version.
*/
const T& get() const
{
return data_;
}
private:
T data_;
/**
* Constructs a value from the given data.
*/
#if defined(CPPTOML_NO_RTTI)
value(const T& val) : base(base_type_traits<T>::type), data_(val)
{
}
#else
value(const T& val) : data_(val)
{
}
#endif
value(const value& val) = delete;
value& operator=(const value& val) = delete;
};
template <class T>
std::shared_ptr<typename value_traits<T>::type> make_value(T&& val)
{
using value_type = typename value_traits<T>::type;
using enabler = typename value_type::make_shared_enabler;
return std::make_shared<value_type>(
enabler{}, value_traits<T>::construct(std::forward<T>(val)));
}
template <class T>
inline std::shared_ptr<value<T>> base::as()
{
#if defined(CPPTOML_NO_RTTI)
if (type() == base_type_traits<T>::type)
return std::static_pointer_cast<value<T>>(shared_from_this());
else
return nullptr;
#else
return std::dynamic_pointer_cast<value<T>>(shared_from_this());
#endif
}
// special case value<double> to allow getting an integer parameter as a
// double value
template <>
inline std::shared_ptr<value<double>> base::as()
{
#if defined(CPPTOML_NO_RTTI)
if (type() == base_type::FLOAT)
return std::static_pointer_cast<value<double>>(shared_from_this());
if (type() == base_type::INT)
{
auto v = std::static_pointer_cast<value<int64_t>>(shared_from_this());
return make_value<double>(static_cast<double>(v->get()));;
}
#else
if (auto v = std::dynamic_pointer_cast<value<double>>(shared_from_this()))
return v;
if (auto v = std::dynamic_pointer_cast<value<int64_t>>(shared_from_this()))
return make_value<double>(static_cast<double>(v->get()));
#endif
return nullptr;
}
template <class T>
inline std::shared_ptr<const value<T>> base::as() const
{
#if defined(CPPTOML_NO_RTTI)
if (type() == base_type_traits<T>::type)
return std::static_pointer_cast<const value<T>>(shared_from_this());
else
return nullptr;
#else
return std::dynamic_pointer_cast<const value<T>>(shared_from_this());
#endif
}
// special case value<double> to allow getting an integer parameter as a
// double value
template <>
inline std::shared_ptr<const value<double>> base::as() const
{
#if defined(CPPTOML_NO_RTTI)
if (type() == base_type::FLOAT)
return std::static_pointer_cast<const value<double>>(shared_from_this());
if (type() == base_type::INT)
{
auto v = as<int64_t>();
// the below has to be a non-const value<double> due to a bug in
// libc++: https://llvm.org/bugs/show_bug.cgi?id=18843
return make_value<double>(static_cast<double>(v->get()));
}
#else
if (auto v
= std::dynamic_pointer_cast<const value<double>>(shared_from_this()))
return v;
if (auto v = as<int64_t>())
{
// the below has to be a non-const value<double> due to a bug in
// libc++: https://llvm.org/bugs/show_bug.cgi?id=18843
return make_value<double>(static_cast<double>(v->get()));
}
#endif
return nullptr;
}
/**
* Exception class for array insertion errors.
*/
class array_exception : public std::runtime_error
{
public:
array_exception(const std::string& err) : std::runtime_error{err}
{
}
};
class array : public base
{
public:
friend std::shared_ptr<array> make_array();
std::shared_ptr<base> clone() const override;
virtual bool is_array() const override
{
return true;
}
using size_type = std::size_t;
/**
* arrays can be iterated over
*/
using iterator = std::vector<std::shared_ptr<base>>::iterator;
/**
* arrays can be iterated over. Const version.
*/
using const_iterator = std::vector<std::shared_ptr<base>>::const_iterator;
iterator begin()
{
return values_.begin();
}
const_iterator begin() const
{
return values_.begin();
}
iterator end()
{
return values_.end();
}
const_iterator end() const
{
return values_.end();
}
/**
* Obtains the array (vector) of base values.
*/
std::vector<std::shared_ptr<base>>& get()
{
return values_;
}
/**
* Obtains the array (vector) of base values. Const version.
*/
const std::vector<std::shared_ptr<base>>& get() const
{
return values_;
}
std::shared_ptr<base> at(size_t idx) const
{
return values_.at(idx);
}
/**
* Obtains an array of value<T>s. Note that elements may be
* nullptr if they cannot be converted to a value<T>.
*/
template <class T>
std::vector<std::shared_ptr<value<T>>> array_of() const
{
std::vector<std::shared_ptr<value<T>>> result(values_.size());
std::transform(values_.begin(), values_.end(), result.begin(),
[&](std::shared_ptr<base> v) { return v->as<T>(); });
return result;
}
/**
* Obtains a option<vector<T>>. The option will be empty if the array
* contains values that are not of type T.
*/
template <class T>
inline typename array_of_trait<T>::return_type get_array_of() const
{
std::vector<T> result;
result.reserve(values_.size());
for (const auto& val : values_)
{
if (auto v = val->as<T>())
result.push_back(v->get());
else
return {};
}
return {std::move(result)};
}
/**
* Obtains an array of arrays. Note that elements may be nullptr
* if they cannot be converted to a array.
*/
std::vector<std::shared_ptr<array>> nested_array() const
{
std::vector<std::shared_ptr<array>> result(values_.size());
std::transform(values_.begin(), values_.end(), result.begin(),
[&](std::shared_ptr<base> v) -> std::shared_ptr<array> {
if (v->is_array())
return std::static_pointer_cast<array>(v);
return std::shared_ptr<array>{};
});
return result;
}
/**
* Add a value to the end of the array
*/
template <class T>
void push_back(const std::shared_ptr<value<T>>& val)
{
if (values_.empty() || values_[0]->as<T>())
{
values_.push_back(val);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Add an array to the end of the array
*/
void push_back(const std::shared_ptr<array>& val)
{
if (values_.empty() || values_[0]->is_array())
{
values_.push_back(val);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Convenience function for adding a simple element to the end
* of the array.
*/
template <class T>
void push_back(T&& val, typename value_traits<T>::type* = 0)
{
push_back(make_value(std::forward<T>(val)));
}
/**
* Insert a value into the array
*/
template <class T>
iterator insert(iterator position, const std::shared_ptr<value<T>>& value)
{
if (values_.empty() || values_[0]->as<T>())
{
return values_.insert(position, value);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Insert an array into the array
*/
iterator insert(iterator position, const std::shared_ptr<array>& value)
{
if (values_.empty() || values_[0]->is_array())
{
return values_.insert(position, value);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Convenience function for inserting a simple element in the array
*/
template <class T>
iterator insert(iterator position, T&& val,
typename value_traits<T>::type* = 0)
{
return insert(position, make_value(std::forward<T>(val)));
}
/**
* Erase an element from the array
*/
iterator erase(iterator position)
{
return values_.erase(position);
}
/**
* Clear the array
*/
void clear()
{
values_.clear();
}
/**
* Reserve space for n values.
*/
void reserve(size_type n)
{
values_.reserve(n);
}
private:
#if defined(CPPTOML_NO_RTTI)
array() : base(base_type::ARRAY)
{
// empty
}
#else
array() = default;
#endif
template <class InputIterator>
array(InputIterator begin, InputIterator end) : values_{begin, end}
{
// nothing
}
array(const array& obj) = delete;
array& operator=(const array& obj) = delete;
std::vector<std::shared_ptr<base>> values_;
};
inline std::shared_ptr<array> make_array()
{
struct make_shared_enabler : public array
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<array> make_element<array>()
{
return make_array();
}
/**
* Obtains a option<vector<T>>. The option will be empty if the array
* contains values that are not of type T.
*/
template <>
inline typename array_of_trait<array>::return_type
array::get_array_of<array>() const
{
std::vector<std::shared_ptr<array>> result;
result.reserve(values_.size());
for (const auto& val : values_)
{
if (auto v = val->as_array())
result.push_back(v);
else
return {};
}
return {std::move(result)};
}
class table;
class table_array : public base
{
friend class table;
friend std::shared_ptr<table_array> make_table_array();
public:
std::shared_ptr<base> clone() const override;
using size_type = std::size_t;
/**
* arrays can be iterated over
*/
using iterator = std::vector<std::shared_ptr<table>>::iterator;
/**
* arrays can be iterated over. Const version.
*/
using const_iterator = std::vector<std::shared_ptr<table>>::const_iterator;
iterator begin()
{
return array_.begin();
}
const_iterator begin() const
{
return array_.begin();
}
iterator end()
{
return array_.end();
}
const_iterator end() const
{
return array_.end();
}
virtual bool is_table_array() const override
{
return true;
}
std::vector<std::shared_ptr<table>>& get()
{
return array_;
}
const std::vector<std::shared_ptr<table>>& get() const
{
return array_;
}
/**
* Add a table to the end of the array
*/
void push_back(const std::shared_ptr<table>& val)
{
array_.push_back(val);
}
/**
* Insert a table into the array
*/
iterator insert(iterator position, const std::shared_ptr<table>& value)
{
return array_.insert(position, value);
}
/**
* Erase an element from the array
*/
iterator erase(iterator position)
{
return array_.erase(position);
}
/**
* Clear the array
*/
void clear()
{
array_.clear();
}
/**
* Reserve space for n tables.
*/
void reserve(size_type n)
{
array_.reserve(n);
}
private:
#if defined(CPPTOML_NO_RTTI)
table_array() : base(base_type::TABLE_ARRAY)
{
// nothing
}
#else
table_array()
{
// nothing
}
#endif
table_array(const table_array& obj) = delete;
table_array& operator=(const table_array& rhs) = delete;
std::vector<std::shared_ptr<table>> array_;
};
inline std::shared_ptr<table_array> make_table_array()
{
struct make_shared_enabler : public table_array
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<table_array> make_element<table_array>()
{
return make_table_array();
}
// The below are overloads for fetching specific value types out of a value
// where special casting behavior (like bounds checking) is desired
template <class T>
typename std::enable_if<!std::is_floating_point<T>::value
&& std::is_signed<T>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<int64_t>())
{
if (v->get() < (std::numeric_limits<T>::min)())
throw std::underflow_error{
"T cannot represent the value requested in get"};
if (v->get() > (std::numeric_limits<T>::max)())
throw std::overflow_error{
"T cannot represent the value requested in get"};
return {static_cast<T>(v->get())};
}
else
{
return {};
}
}
template <class T>
typename std::enable_if<!std::is_same<T, bool>::value
&& std::is_unsigned<T>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<int64_t>())
{
if (v->get() < 0)
throw std::underflow_error{"T cannot store negative value in get"};
if (static_cast<uint64_t>(v->get()) > (std::numeric_limits<T>::max)())
throw std::overflow_error{
"T cannot represent the value requested in get"};
return {static_cast<T>(v->get())};
}
else
{
return {};
}
}
template <class T>
typename std::enable_if<!std::is_integral<T>::value
|| std::is_same<T, bool>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<T>())
{
return {v->get()};
}
else
{
return {};
}
}
/**
* Represents a TOML keytable.
*/
class table : public base
{
public:
friend class table_array;
friend std::shared_ptr<table> make_table();
std::shared_ptr<base> clone() const override;
/**
* tables can be iterated over.
*/
using iterator = string_to_base_map::iterator;
/**
* tables can be iterated over. Const version.
*/
using const_iterator = string_to_base_map::const_iterator;
iterator begin()
{
return map_.begin();
}
const_iterator begin() const
{
return map_.begin();
}
iterator end()
{
return map_.end();
}
const_iterator end() const
{
return map_.end();
}
bool is_table() const override
{
return true;
}
bool empty() const
{
return map_.empty();
}
/**
* Determines if this key table contains the given key.
*/
bool contains(const std::string& key) const
{
return map_.find(key) != map_.end();
}
/**
* Determines if this key table contains the given key. Will
* resolve "qualified keys". Qualified keys are the full access
* path separated with dots like "grandparent.parent.child".
*/
bool contains_qualified(const std::string& key) const
{
return resolve_qualified(key);
}
/**
* Obtains the base for a given key.
* @throw std::out_of_range if the key does not exist
*/
std::shared_ptr<base> get(const std::string& key) const
{
return map_.at(key);
}
/**
* Obtains the base for a given key. Will resolve "qualified
* keys". Qualified keys are the full access path separated with
* dots like "grandparent.parent.child".
*
* @throw std::out_of_range if the key does not exist
*/
std::shared_ptr<base> get_qualified(const std::string& key) const
{
std::shared_ptr<base> p;
resolve_qualified(key, &p);
return p;
}
/**
* Obtains a table for a given key, if possible.
*/
std::shared_ptr<table> get_table(const std::string& key) const
{
if (contains(key) && get(key)->is_table())
return std::static_pointer_cast<table>(get(key));
return nullptr;
}
/**
* Obtains a table for a given key, if possible. Will resolve
* "qualified keys".
*/
std::shared_ptr<table> get_table_qualified(const std::string& key) const
{
if (contains_qualified(key) && get_qualified(key)->is_table())
return std::static_pointer_cast<table>(get_qualified(key));
return nullptr;
}
/**
* Obtains an array for a given key.
*/
std::shared_ptr<array> get_array(const std::string& key) const
{
if (!contains(key))
return nullptr;
return get(key)->as_array();
}
/**
* Obtains an array for a given key. Will resolve "qualified keys".
*/
std::shared_ptr<array> get_array_qualified(const std::string& key) const
{
if (!contains_qualified(key))
return nullptr;
return get_qualified(key)->as_array();
}
/**
* Obtains a table_array for a given key, if possible.
*/
std::shared_ptr<table_array> get_table_array(const std::string& key) const
{
if (!contains(key))
return nullptr;
return get(key)->as_table_array();
}
/**
* Obtains a table_array for a given key, if possible. Will resolve
* "qualified keys".
*/
std::shared_ptr<table_array>
get_table_array_qualified(const std::string& key) const
{
if (!contains_qualified(key))
return nullptr;
return get_qualified(key)->as_table_array();
}
/**
* Helper function that attempts to get a value corresponding
* to the template parameter from a given key.
*/
template <class T>
option<T> get_as(const std::string& key) const
{
try
{
return get_impl<T>(get(key));
}
catch (const std::out_of_range&)
{
return {};
}
}
/**
* Helper function that attempts to get a value corresponding
* to the template parameter from a given key. Will resolve "qualified
* keys".
*/
template <class T>
option<T> get_qualified_as(const std::string& key) const
{
try
{
return get_impl<T>(get_qualified(key));
}
catch (const std::out_of_range&)
{
return {};
}
}
/**
* Helper function that attempts to get an array of values of a given
* type corresponding to the template parameter for a given key.
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <class T>
inline typename array_of_trait<T>::return_type
get_array_of(const std::string& key) const
{
if (auto v = get_array(key))
{
std::vector<T> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as<T>())
result.push_back(val->get());
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Helper function that attempts to get an array of values of a given
* type corresponding to the template parameter for a given key. Will
* resolve "qualified keys".
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <class T>
inline typename array_of_trait<T>::return_type
get_qualified_array_of(const std::string& key) const
{
if (auto v = get_array_qualified(key))
{
std::vector<T> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as<T>())
result.push_back(val->get());
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Adds an element to the keytable.
*/
void insert(const std::string& key, const std::shared_ptr<base>& value)
{
map_[key] = value;
}
/**
* Convenience shorthand for adding a simple element to the
* keytable.
*/
template <class T>
void insert(const std::string& key, T&& val,
typename value_traits<T>::type* = 0)
{
insert(key, make_value(std::forward<T>(val)));
}
/**
* Removes an element from the table.
*/
void erase(const std::string& key)
{
map_.erase(key);
}
private:
#if defined(CPPTOML_NO_RTTI)
table() : base(base_type::TABLE)
{
// nothing
}
#else
table()
{
// nothing
}
#endif
table(const table& obj) = delete;
table& operator=(const table& rhs) = delete;
std::vector<std::string> split(const std::string& value,
char separator) const
{
std::vector<std::string> result;
std::string::size_type p = 0;
std::string::size_type q;
while ((q = value.find(separator, p)) != std::string::npos)
{
result.emplace_back(value, p, q - p);
p = q + 1;
}
result.emplace_back(value, p);
return result;
}
// If output parameter p is specified, fill it with the pointer to the
// specified entry and throw std::out_of_range if it couldn't be found.
//
// Otherwise, just return true if the entry could be found or false
// otherwise and do not throw.
bool resolve_qualified(const std::string& key,
std::shared_ptr<base>* p = nullptr) const
{
auto parts = split(key, '.');
auto last_key = parts.back();
parts.pop_back();
auto cur_table = this;
for (const auto& part : parts)
{
cur_table = cur_table->get_table(part).get();
if (!cur_table)
{
if (!p)
return false;
throw std::out_of_range{key + " is not a valid key"};
}
}
if (!p)
return cur_table->map_.count(last_key) != 0;
*p = cur_table->map_.at(last_key);
return true;
}
string_to_base_map map_;
};
/**
* Helper function that attempts to get an array of arrays for a given
* key.
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <>
inline typename array_of_trait<array>::return_type
table::get_array_of<array>(const std::string& key) const
{
if (auto v = get_array(key))
{
std::vector<std::shared_ptr<array>> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as_array())
result.push_back(val);
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Helper function that attempts to get an array of arrays for a given
* key. Will resolve "qualified keys".
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <>
inline typename array_of_trait<array>::return_type
table::get_qualified_array_of<array>(const std::string& key) const
{
if (auto v = get_array_qualified(key))
{
std::vector<std::shared_ptr<array>> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as_array())
result.push_back(val);
else
return {};
}
return {std::move(result)};
}
return {};
}
std::shared_ptr<table> make_table()
{
struct make_shared_enabler : public table
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<table> make_element<table>()
{
return make_table();
}
template <class T>
std::shared_ptr<base> value<T>::clone() const
{
return make_value(data_);
}
inline std::shared_ptr<base> array::clone() const
{
auto result = make_array();
result->reserve(values_.size());
for (const auto& ptr : values_)
result->values_.push_back(ptr->clone());
return result;
}
inline std::shared_ptr<base> table_array::clone() const
{
auto result = make_table_array();
result->reserve(array_.size());
for (const auto& ptr : array_)
result->array_.push_back(ptr->clone()->as_table());
return result;
}
inline std::shared_ptr<base> table::clone() const
{
auto result = make_table();
for (const auto& pr : map_)
result->insert(pr.first, pr.second->clone());
return result;
}
/**
* Exception class for all TOML parsing errors.
*/
class parse_exception : public std::runtime_error
{
public:
parse_exception(const std::string& err) : std::runtime_error{err}
{
}
parse_exception(const std::string& err, std::size_t line_number)
: std::runtime_error{err + " at line " + std::to_string(line_number)}
{
}
};
inline bool is_number(char c)
{
return c >= '0' && c <= '9';
}
/**
* Helper object for consuming expected characters.
*/
template <class OnError>
class consumer
{
public:
consumer(std::string::iterator& it, const std::string::iterator& end,
OnError&& on_error)
: it_(it), end_(end), on_error_(std::forward<OnError>(on_error))
{
// nothing
}
void operator()(char c)
{
if (it_ == end_ || *it_ != c)
on_error_();
++it_;
}
template <std::size_t N>
void operator()(const char (&str)[N])
{
std::for_each(std::begin(str), std::end(str) - 1,
[&](char c) { (*this)(c); });
}
int eat_digits(int len)
{
int val = 0;
for (int i = 0; i < len; ++i)
{
if (!is_number(*it_) || it_ == end_)
on_error_();
val = 10 * val + (*it_++ - '0');
}
return val;
}
void error()
{
on_error_();
}
private:
std::string::iterator& it_;
const std::string::iterator& end_;
OnError on_error_;
};
template <class OnError>
consumer<OnError> make_consumer(std::string::iterator& it,
const std::string::iterator& end,
OnError&& on_error)
{
return consumer<OnError>(it, end, std::forward<OnError>(on_error));
}
// replacement for std::getline to handle incorrectly line-ended files
// https://stackoverflow.com/questions/6089231/getting-std-ifstream-to-handle-lf-cr-and-crlf
namespace detail
{
inline std::istream& getline(std::istream& input, std::string& line)
{
line.clear();
std::istream::sentry sentry{input, true};
auto sb = input.rdbuf();
while (true)
{
auto c = sb->sbumpc();
if (c == '\r')
{
if (sb->sgetc() == '\n')
c = sb->sbumpc();
}
if (c == '\n')
return input;
if (c == std::istream::traits_type::eof())
{
if (line.empty())
input.setstate(std::ios::eofbit);
return input;
}
line.push_back(static_cast<char>(c));
}
}
}
/**
* The parser class.
*/
class parser
{
public:
/**
* Parsers are constructed from streams.
*/
parser(std::istream& stream) : input_(stream)
{
// nothing
}
parser& operator=(const parser& parser) = delete;
/**
* Parses the stream this parser was created on until EOF.
* @throw parse_exception if there are errors in parsing
*/
std::shared_ptr<table> parse()
{
std::shared_ptr<table> root = make_table();
table* curr_table = root.get();
while (detail::getline(input_, line_))
{
line_number_++;
auto it = line_.begin();
auto end = line_.end();
consume_whitespace(it, end);
if (it == end || *it == '#')
continue;
if (*it == '[')
{
curr_table = root.get();
parse_table(it, end, curr_table);
}
else
{
parse_key_value(it, end, curr_table);
consume_whitespace(it, end);
eol_or_comment(it, end);
}
}
return root;
}
private:
#if defined _MSC_VER
__declspec(noreturn)
#elif defined __GNUC__
__attribute__((noreturn))
#endif
void throw_parse_exception(const std::string& err)
{
throw parse_exception{err, line_number_};
}
void parse_table(std::string::iterator& it,
const std::string::iterator& end, table*& curr_table)
{
// remove the beginning keytable marker
++it;
if (it == end)
throw_parse_exception("Unexpected end of table");
if (*it == '[')
parse_table_array(it, end, curr_table);
else
parse_single_table(it, end, curr_table);
}
void parse_single_table(std::string::iterator& it,
const std::string::iterator& end,
table*& curr_table)
{
if (it == end || *it == ']')
throw_parse_exception("Table name cannot be empty");
std::string full_table_name;
bool inserted = false;
while (it != end && *it != ']')
{
auto part = parse_key(it, end,
[](char c) { return c == '.' || c == ']'; });
if (part.empty())
throw_parse_exception("Empty component of table name");
if (!full_table_name.empty())
full_table_name += ".";
full_table_name += part;
if (curr_table->contains(part))
{
auto b = curr_table->get(part);
if (b->is_table())
curr_table = static_cast<table*>(b.get());
else if (b->is_table_array())
curr_table = std::static_pointer_cast<table_array>(b)
->get()
.back()
.get();
else
throw_parse_exception("Key " + full_table_name
+ "already exists as a value");
}
else
{
inserted = true;
curr_table->insert(part, make_table());
curr_table = static_cast<table*>(curr_table->get(part).get());
}
consume_whitespace(it, end);
if (it != end && *it == '.')
++it;
consume_whitespace(it, end);
}
if (it == end)
throw_parse_exception(
"Unterminated table declaration; did you forget a ']'?");
// table already existed
if (!inserted)
{
auto is_value
= [](const std::pair<const std::string&,
const std::shared_ptr<base>&>& p) {
return p.second->is_value();
};
// if there are any values, we can't add values to this table
// since it has already been defined. If there aren't any
// values, then it was implicitly created by something like
// [a.b]
if (curr_table->empty() || std::any_of(curr_table->begin(),
curr_table->end(), is_value))
{
throw_parse_exception("Redefinition of table "
+ full_table_name);
}
}
++it;
consume_whitespace(it, end);
eol_or_comment(it, end);
}
void parse_table_array(std::string::iterator& it,
const std::string::iterator& end, table*& curr_table)
{
++it;
if (it == end || *it == ']')
throw_parse_exception("Table array name cannot be empty");
std::string full_ta_name;
while (it != end && *it != ']')
{
auto part = parse_key(it, end,
[](char c) { return c == '.' || c == ']'; });
if (part.empty())
throw_parse_exception("Empty component of table array name");
if (!full_ta_name.empty())
full_ta_name += ".";
full_ta_name += part;
consume_whitespace(it, end);
if (it != end && *it == '.')
++it;
consume_whitespace(it, end);
if (curr_table->contains(part))
{
auto b = curr_table->get(part);
// if this is the end of the table array name, add an
// element to the table array that we just looked up
if (it != end && *it == ']')
{
if (!b->is_table_array())
throw_parse_exception("Key " + full_ta_name
+ " is not a table array");
auto v = b->as_table_array();
v->get().push_back(make_table());
curr_table = v->get().back().get();
}
// otherwise, just keep traversing down the key name
else
{
if (b->is_table())
curr_table = static_cast<table*>(b.get());
else if (b->is_table_array())
curr_table = std::static_pointer_cast<table_array>(b)
->get()
.back()
.get();
else
throw_parse_exception("Key " + full_ta_name
+ " already exists as a value");
}
}
else
{
// if this is the end of the table array name, add a new
// table array and a new table inside that array for us to
// add keys to next
if (it != end && *it == ']')
{
curr_table->insert(part, make_table_array());
auto arr = std::static_pointer_cast<table_array>(
curr_table->get(part));
arr->get().push_back(make_table());
curr_table = arr->get().back().get();
}
// otherwise, create the implicitly defined table and move
// down to it
else
{
curr_table->insert(part, make_table());
curr_table
= static_cast<table*>(curr_table->get(part).get());
}
}
}
// consume the last "]]"
if (it == end)
throw_parse_exception("Unterminated table array name");
++it;
if (it == end)
throw_parse_exception("Unterminated table array name");
++it;
consume_whitespace(it, end);
eol_or_comment(it, end);
}
void parse_key_value(std::string::iterator& it, std::string::iterator& end,
table* curr_table)
{
auto key = parse_key(it, end, [](char c) { return c == '='; });
if (curr_table->contains(key))
throw_parse_exception("Key " + key + " already present");
if (it == end || *it != '=')
throw_parse_exception("Value must follow after a '='");
++it;
consume_whitespace(it, end);
curr_table->insert(key, parse_value(it, end));
consume_whitespace(it, end);
}
template <class Function>
std::string parse_key(std::string::iterator& it,
const std::string::iterator& end, Function&& fun)
{
consume_whitespace(it, end);
if (*it == '"')
{
return parse_quoted_key(it, end);
}
else
{
auto bke = std::find_if(it, end, std::forward<Function>(fun));
return parse_bare_key(it, bke);
}
}
std::string parse_bare_key(std::string::iterator& it,
const std::string::iterator& end)
{
if (it == end)
{
throw_parse_exception("Bare key missing name");
}
auto key_end = end;
--key_end;
consume_backwards_whitespace(key_end, it);
++key_end;
std::string key{it, key_end};
if (std::find(it, key_end, '#') != key_end)
{
throw_parse_exception("Bare key " + key + " cannot contain #");
}
if (std::find_if(it, key_end,
[](char c) { return c == ' ' || c == '\t'; })
!= key_end)
{
throw_parse_exception("Bare key " + key
+ " cannot contain whitespace");
}
if (std::find_if(it, key_end,
[](char c) { return c == '[' || c == ']'; })
!= key_end)
{
throw_parse_exception("Bare key " + key
+ " cannot contain '[' or ']'");
}
it = end;
return key;
}
std::string parse_quoted_key(std::string::iterator& it,
const std::string::iterator& end)
{
return string_literal(it, end, '"');
}
enum class parse_type
{
STRING = 1,
LOCAL_TIME,
LOCAL_DATE,
LOCAL_DATETIME,
OFFSET_DATETIME,
INT,
FLOAT,
BOOL,
ARRAY,
INLINE_TABLE
};
std::shared_ptr<base> parse_value(std::string::iterator& it,
std::string::iterator& end)
{
parse_type type = determine_value_type(it, end);
switch (type)
{
case parse_type::STRING:
return parse_string(it, end);
case parse_type::LOCAL_TIME:
return parse_time(it, end);
case parse_type::LOCAL_DATE:
case parse_type::LOCAL_DATETIME:
case parse_type::OFFSET_DATETIME:
return parse_date(it, end);
case parse_type::INT:
case parse_type::FLOAT:
return parse_number(it, end);
case parse_type::BOOL:
return parse_bool(it, end);
case parse_type::ARRAY:
return parse_array(it, end);
case parse_type::INLINE_TABLE:
return parse_inline_table(it, end);
default:
throw_parse_exception("Failed to parse value");
}
}
parse_type determine_value_type(const std::string::iterator& it,
const std::string::iterator& end)
{
if(it == end)
{
throw_parse_exception("Failed to parse value type");
}
if (*it == '"' || *it == '\'')
{
return parse_type::STRING;
}
else if (is_time(it, end))
{
return parse_type::LOCAL_TIME;
}
else if (auto dtype = date_type(it, end))
{
return *dtype;
}
else if (is_number(*it) || *it == '-' || *it == '+')
{
return determine_number_type(it, end);
}
else if (*it == 't' || *it == 'f')
{
return parse_type::BOOL;
}
else if (*it == '[')
{
return parse_type::ARRAY;
}
else if (*it == '{')
{
return parse_type::INLINE_TABLE;
}
throw_parse_exception("Failed to parse value type");
}
parse_type determine_number_type(const std::string::iterator& it,
const std::string::iterator& end)
{
// determine if we are an integer or a float
auto check_it = it;
if (*check_it == '-' || *check_it == '+')
++check_it;
while (check_it != end && is_number(*check_it))
++check_it;
if (check_it != end && *check_it == '.')
{
++check_it;
while (check_it != end && is_number(*check_it))
++check_it;
return parse_type::FLOAT;
}
else
{
return parse_type::INT;
}
}
std::shared_ptr<value<std::string>> parse_string(std::string::iterator& it,
std::string::iterator& end)
{
auto delim = *it;
assert(delim == '"' || delim == '\'');
// end is non-const here because we have to be able to potentially
// parse multiple lines in a string, not just one
auto check_it = it;
++check_it;
if (check_it != end && *check_it == delim)
{
++check_it;
if (check_it != end && *check_it == delim)
{
it = ++check_it;
return parse_multiline_string(it, end, delim);
}
}
return make_value<std::string>(string_literal(it, end, delim));
}
std::shared_ptr<value<std::string>>
parse_multiline_string(std::string::iterator& it,
std::string::iterator& end, char delim)
{
std::stringstream ss;
auto is_ws = [](char c) { return c == ' ' || c == '\t'; };
bool consuming = false;
std::shared_ptr<value<std::string>> ret;
auto handle_line
= [&](std::string::iterator& local_it,
std::string::iterator& local_end) {
if (consuming)
{
local_it = std::find_if_not(local_it, local_end, is_ws);
// whole line is whitespace
if (local_it == local_end)
return;
}
consuming = false;
while (local_it != local_end)
{
// handle escaped characters
if (delim == '"' && *local_it == '\\')
{
auto check = local_it;
// check if this is an actual escape sequence or a
// whitespace escaping backslash
++check;
consume_whitespace(check, local_end);
if (check == local_end)
{
consuming = true;
break;
}
ss << parse_escape_code(local_it, local_end);
continue;
}
// if we can end the string
if (std::distance(local_it, local_end) >= 3)
{
auto check = local_it;
// check for """
if (*check++ == delim && *check++ == delim
&& *check++ == delim)
{
local_it = check;
ret = make_value<std::string>(ss.str());
break;
}
}
ss << *local_it++;
}
};
// handle the remainder of the current line
handle_line(it, end);
if (ret)
return ret;
// start eating lines
while (detail::getline(input_, line_))
{
++line_number_;
it = line_.begin();
end = line_.end();
handle_line(it, end);
if (ret)
return ret;
if (!consuming)
ss << std::endl;
}
throw_parse_exception("Unterminated multi-line basic string");
}
std::string string_literal(std::string::iterator& it,
const std::string::iterator& end, char delim)
{
++it;
std::string val;
while (it != end)
{
// handle escaped characters
if (delim == '"' && *it == '\\')
{
val += parse_escape_code(it, end);
}
else if (*it == delim)
{
++it;
consume_whitespace(it, end);
return val;
}
else
{
val += *it++;
}
}
throw_parse_exception("Unterminated string literal");
}
std::string parse_escape_code(std::string::iterator& it,
const std::string::iterator& end)
{
++it;
if (it == end)
throw_parse_exception("Invalid escape sequence");
char value;
if (*it == 'b')
{
value = '\b';
}
else if (*it == 't')
{
value = '\t';
}
else if (*it == 'n')
{
value = '\n';
}
else if (*it == 'f')
{
value = '\f';
}
else if (*it == 'r')
{
value = '\r';
}
else if (*it == '"')
{
value = '"';
}
else if (*it == '\\')
{
value = '\\';
}
else if (*it == 'u' || *it == 'U')
{
return parse_unicode(it, end);
}
else
{
throw_parse_exception("Invalid escape sequence");
}
++it;
return std::string(1, value);
}
std::string parse_unicode(std::string::iterator& it,
const std::string::iterator& end)
{
bool large = *it++ == 'U';
auto codepoint = parse_hex(it, end, large ? 0x10000000 : 0x1000);
if ((codepoint > 0xd7ff && codepoint < 0xe000) || codepoint > 0x10ffff)
{
throw_parse_exception(
"Unicode escape sequence is not a Unicode scalar value");
}
std::string result;
// See Table 3-6 of the Unicode standard
if (codepoint <= 0x7f)
{
// 1-byte codepoints: 00000000 0xxxxxxx
// repr: 0xxxxxxx
result += static_cast<char>(codepoint & 0x7f);
}
else if (codepoint <= 0x7ff)
{
// 2-byte codepoints: 00000yyy yyxxxxxx
// repr: 110yyyyy 10xxxxxx
//
// 0x1f = 00011111
// 0xc0 = 11000000
//
result += static_cast<char>(0xc0 | ((codepoint >> 6) & 0x1f));
//
// 0x80 = 10000000
// 0x3f = 00111111
//
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
else if (codepoint <= 0xffff)
{
// 3-byte codepoints: zzzzyyyy yyxxxxxx
// repr: 1110zzzz 10yyyyyy 10xxxxxx
//
// 0xe0 = 11100000
// 0x0f = 00001111
//
result += static_cast<char>(0xe0 | ((codepoint >> 12) & 0x0f));
result += static_cast<char>(0x80 | ((codepoint >> 6) & 0x1f));
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
else
{
// 4-byte codepoints: 000uuuuu zzzzyyyy yyxxxxxx
// repr: 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
//
// 0xf0 = 11110000
// 0x07 = 00000111
//
result += static_cast<char>(0xf0 | ((codepoint >> 18) & 0x07));
result += static_cast<char>(0x80 | ((codepoint >> 12) & 0x3f));
result += static_cast<char>(0x80 | ((codepoint >> 6) & 0x3f));
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
return result;
}
uint32_t parse_hex(std::string::iterator& it,
const std::string::iterator& end, uint32_t place)
{
uint32_t value = 0;
while (place > 0)
{
if (it == end)
throw_parse_exception("Unexpected end of unicode sequence");
if (!is_hex(*it))
throw_parse_exception("Invalid unicode escape sequence");
value += place * hex_to_digit(*it++);
place /= 16;
}
return value;
}
bool is_hex(char c)
{
return is_number(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
}
uint32_t hex_to_digit(char c)
{
if (is_number(c))
return static_cast<uint32_t>(c - '0');
return 10 + static_cast<uint32_t>(
c - ((c >= 'a' && c <= 'f') ? 'a' : 'A'));
}
std::shared_ptr<base> parse_number(std::string::iterator& it,
const std::string::iterator& end)
{
auto check_it = it;
auto check_end = find_end_of_number(it, end);
auto eat_sign = [&]() {
if (check_it != end && (*check_it == '-' || *check_it == '+'))
++check_it;
};
eat_sign();
auto eat_numbers = [&]() {
auto beg = check_it;
while (check_it != end && is_number(*check_it))
{
++check_it;
if (check_it != end && *check_it == '_')
{
++check_it;
if (check_it == end || !is_number(*check_it))
throw_parse_exception("Malformed number");
}
}
if (check_it == beg)
throw_parse_exception("Malformed number");
};
auto check_no_leading_zero = [&]() {
if (check_it != end && *check_it == '0' && check_it + 1 != check_end
&& check_it[1] != '.')
{
throw_parse_exception("Numbers may not have leading zeros");
}
};
check_no_leading_zero();
eat_numbers();
if (check_it != end
&& (*check_it == '.' || *check_it == 'e' || *check_it == 'E'))
{
bool is_exp = *check_it == 'e' || *check_it == 'E';
++check_it;
if (check_it == end)
throw_parse_exception("Floats must have trailing digits");
auto eat_exp = [&]() {
eat_sign();
check_no_leading_zero();
eat_numbers();
};
if (is_exp)
eat_exp();
else
eat_numbers();
if (!is_exp && check_it != end
&& (*check_it == 'e' || *check_it == 'E'))
{
++check_it;
eat_exp();
}
return parse_float(it, check_it);
}
else
{
return parse_int(it, check_it);
}
}
std::shared_ptr<value<int64_t>> parse_int(std::string::iterator& it,
const std::string::iterator& end)
{
std::string v{it, end};
v.erase(std::remove(v.begin(), v.end(), '_'), v.end());
it = end;
try
{
return make_value<int64_t>(std::stoll(v));
}
catch (const std::invalid_argument& ex)
{
throw_parse_exception("Malformed number (invalid argument: "
+ std::string{ex.what()} + ")");
}
catch (const std::out_of_range& ex)
{
throw_parse_exception("Malformed number (out of range: "
+ std::string{ex.what()} + ")");
}
}
std::shared_ptr<value<double>> parse_float(std::string::iterator& it,
const std::string::iterator& end)
{
std::string v{it, end};
v.erase(std::remove(v.begin(), v.end(), '_'), v.end());
it = end;
char decimal_point = std::localeconv()->decimal_point[0];
std::replace(v.begin(), v.end(), '.', decimal_point);
try
{
return make_value<double>(std::stod(v));
}
catch (const std::invalid_argument& ex)
{
throw_parse_exception("Malformed number (invalid argument: "
+ std::string{ex.what()} + ")");
}
catch (const std::out_of_range& ex)
{
throw_parse_exception("Malformed number (out of range: "
+ std::string{ex.what()} + ")");
}
}
std::shared_ptr<value<bool>> parse_bool(std::string::iterator& it,
const std::string::iterator& end)
{
auto eat = make_consumer(it, end, [this]() {
throw_parse_exception("Attempted to parse invalid boolean value");
});
if (*it == 't')
{
eat("true");
return make_value<bool>(true);
}
else if (*it == 'f')
{
eat("false");
return make_value<bool>(false);
}
eat.error();
return nullptr;
}
std::string::iterator find_end_of_number(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [](char c) {
return !is_number(c) && c != '_' && c != '.' && c != 'e' && c != 'E'
&& c != '-' && c != '+';
});
}
std::string::iterator find_end_of_date(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [](char c) {
return !is_number(c) && c != 'T' && c != 'Z' && c != ':' && c != '-'
&& c != '+' && c != '.';
});
}
std::string::iterator find_end_of_time(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [](char c) {
return !is_number(c) && c != ':' && c != '.';
});
}
local_time read_time(std::string::iterator& it,
const std::string::iterator& end)
{
auto time_end = find_end_of_time(it, end);
auto eat = make_consumer(
it, time_end, [&]() { throw_parse_exception("Malformed time"); });
local_time ltime;
ltime.hour = eat.eat_digits(2);
eat(':');
ltime.minute = eat.eat_digits(2);
eat(':');
ltime.second = eat.eat_digits(2);
int power = 100000;
if (it != time_end && *it == '.')
{
++it;
while (it != time_end && is_number(*it))
{
ltime.microsecond += power * (*it++ - '0');
power /= 10;
}
}
if (it != time_end)
throw_parse_exception("Malformed time");
return ltime;
}
std::shared_ptr<value<local_time>>
parse_time(std::string::iterator& it, const std::string::iterator& end)
{
return make_value(read_time(it, end));
}
std::shared_ptr<base> parse_date(std::string::iterator& it,
const std::string::iterator& end)
{
auto date_end = find_end_of_date(it, end);
auto eat = make_consumer(
it, date_end, [&]() { throw_parse_exception("Malformed date"); });
local_date ldate;
ldate.year = eat.eat_digits(4);
eat('-');
ldate.month = eat.eat_digits(2);
eat('-');
ldate.day = eat.eat_digits(2);
if (it == date_end)
return make_value(ldate);
eat('T');
local_datetime ldt;
static_cast<local_date&>(ldt) = ldate;
static_cast<local_time&>(ldt) = read_time(it, date_end);
if (it == date_end)
return make_value(ldt);
offset_datetime dt;
static_cast<local_datetime&>(dt) = ldt;
int hoff = 0;
int moff = 0;
if (*it == '+' || *it == '-')
{
auto plus = *it == '+';
++it;
hoff = eat.eat_digits(2);
dt.hour_offset = (plus) ? hoff : -hoff;
eat(':');
moff = eat.eat_digits(2);
dt.minute_offset = (plus) ? moff : -moff;
}
else if (*it == 'Z')
{
++it;
}
if (it != date_end)
throw_parse_exception("Malformed date");
return make_value(dt);
}
std::shared_ptr<base> parse_array(std::string::iterator& it,
std::string::iterator& end)
{
// this gets ugly because of the "homogeneity" restriction:
// arrays can either be of only one type, or contain arrays
// (each of those arrays could be of different types, though)
//
// because of the latter portion, we don't really have a choice
// but to represent them as arrays of base values...
++it;
// ugh---have to read the first value to determine array type...
skip_whitespace_and_comments(it, end);
// edge case---empty array
if (*it == ']')
{
++it;
return make_array();
}
auto val_end = std::find_if(
it, end, [](char c) { return c == ',' || c == ']' || c == '#'; });
parse_type type = determine_value_type(it, val_end);
switch (type)
{
case parse_type::STRING:
return parse_value_array<std::string>(it, end);
case parse_type::LOCAL_TIME:
return parse_value_array<local_time>(it, end);
case parse_type::LOCAL_DATE:
return parse_value_array<local_date>(it, end);
case parse_type::LOCAL_DATETIME:
return parse_value_array<local_datetime>(it, end);
case parse_type::OFFSET_DATETIME:
return parse_value_array<offset_datetime>(it, end);
case parse_type::INT:
return parse_value_array<int64_t>(it, end);
case parse_type::FLOAT:
return parse_value_array<double>(it, end);
case parse_type::BOOL:
return parse_value_array<bool>(it, end);
case parse_type::ARRAY:
return parse_object_array<array>(&parser::parse_array, '[', it,
end);
case parse_type::INLINE_TABLE:
return parse_object_array<table_array>(
&parser::parse_inline_table, '{', it, end);
default:
throw_parse_exception("Unable to parse array");
}
}
template <class Value>
std::shared_ptr<array> parse_value_array(std::string::iterator& it,
std::string::iterator& end)
{
auto arr = make_array();
while (it != end && *it != ']')
{
auto value = parse_value(it, end);
if (auto v = value->as<Value>())
arr->get().push_back(value);
else
throw_parse_exception("Arrays must be homogeneous");
skip_whitespace_and_comments(it, end);
if (*it != ',')
break;
++it;
skip_whitespace_and_comments(it, end);
}
if (it != end)
++it;
return arr;
}
template <class Object, class Function>
std::shared_ptr<Object> parse_object_array(Function&& fun, char delim,
std::string::iterator& it,
std::string::iterator& end)
{
auto arr = make_element<Object>();
while (it != end && *it != ']')
{
if (*it != delim)
throw_parse_exception("Unexpected character in array");
arr->get().push_back(((*this).*fun)(it, end));
skip_whitespace_and_comments(it, end);
if (*it != ',')
break;
++it;
skip_whitespace_and_comments(it, end);
}
if (it == end || *it != ']')
throw_parse_exception("Unterminated array");
++it;
return arr;
}
std::shared_ptr<table> parse_inline_table(std::string::iterator& it,
std::string::iterator& end)
{
auto tbl = make_table();
do
{
++it;
if (it == end)
throw_parse_exception("Unterminated inline table");
consume_whitespace(it, end);
parse_key_value(it, end, tbl.get());
consume_whitespace(it, end);
} while (*it == ',');
if (it == end || *it != '}')
throw_parse_exception("Unterminated inline table");
++it;
consume_whitespace(it, end);
return tbl;
}
void skip_whitespace_and_comments(std::string::iterator& start,
std::string::iterator& end)
{
consume_whitespace(start, end);
while (start == end || *start == '#')
{
if (!detail::getline(input_, line_))
throw_parse_exception("Unclosed array");
line_number_++;
start = line_.begin();
end = line_.end();
consume_whitespace(start, end);
}
}
void consume_whitespace(std::string::iterator& it,
const std::string::iterator& end)
{
while (it != end && (*it == ' ' || *it == '\t'))
++it;
}
void consume_backwards_whitespace(std::string::iterator& back,
const std::string::iterator& front)
{
while (back != front && (*back == ' ' || *back == '\t'))
--back;
}
void eol_or_comment(const std::string::iterator& it,
const std::string::iterator& end)
{
if (it != end && *it != '#')
throw_parse_exception("Unidentified trailing character '"
+ std::string{*it}
+ "'---did you forget a '#'?");
}
bool is_time(const std::string::iterator& it,
const std::string::iterator& end)
{
auto time_end = find_end_of_time(it, end);
auto len = std::distance(it, time_end);
if (len < 8)
return false;
if (it[2] != ':' || it[5] != ':')
return false;
if (len > 8)
return it[8] == '.' && len > 9;
return true;
}
option<parse_type> date_type(const std::string::iterator& it,
const std::string::iterator& end)
{
auto date_end = find_end_of_date(it, end);
auto len = std::distance(it, date_end);
if (len < 10)
return {};
if (it[4] != '-' || it[7] != '-')
return {};
if (len >= 19 && it[10] == 'T' && is_time(it + 11, date_end))
{
// datetime type
auto time_end = find_end_of_time(it + 11, date_end);
if (time_end == date_end)
return {parse_type::LOCAL_DATETIME};
else
return {parse_type::OFFSET_DATETIME};
}
else if (len == 10)
{
// just a regular date
return {parse_type::LOCAL_DATE};
}
return {};
}
std::istream& input_;
std::string line_;
std::size_t line_number_ = 0;
};
/**
* Utility function to parse a file as a TOML file. Returns the root table.
* Throws a parse_exception if the file cannot be opened.
*/
inline std::shared_ptr<table> parse_file(const std::string& filename)
{
#if defined(BOOST_NOWIDE_FSTREAM_INCLUDED_HPP)
boost::nowide::ifstream file{filename.c_str()};
#elif defined(NOWIDE_FSTREAM_INCLUDED_HPP)
nowide::ifstream file{filename.c_str()};
#else
std::ifstream file{filename};
#endif
if (!file.is_open())
throw parse_exception{filename + " could not be opened for parsing"};
parser p{file};
return p.parse();
}
template <class... Ts>
struct value_accept;
template <>
struct value_accept<>
{
template <class Visitor, class... Args>
static void accept(const base&, Visitor&&, Args&&...)
{
// nothing
}
};
template <class T, class... Ts>
struct value_accept<T, Ts...>
{
template <class Visitor, class... Args>
static void accept(const base& b, Visitor&& visitor, Args&&... args)
{
if (auto v = b.as<T>())
{
visitor.visit(*v, std::forward<Args>(args)...);
}
else
{
value_accept<Ts...>::accept(b, std::forward<Visitor>(visitor),
std::forward<Args>(args)...);
}
}
};
/**
* base implementation of accept() that calls visitor.visit() on the concrete
* class.
*/
template <class Visitor, class... Args>
void base::accept(Visitor&& visitor, Args&&... args) const
{
if (is_value())
{
using value_acceptor
= value_accept<std::string, int64_t, double, bool, local_date,
local_time, local_datetime, offset_datetime>;
value_acceptor::accept(*this, std::forward<Visitor>(visitor),
std::forward<Args>(args)...);
}
else if (is_table())
{
visitor.visit(static_cast<const table&>(*this),
std::forward<Args>(args)...);
}
else if (is_array())
{
visitor.visit(static_cast<const array&>(*this),
std::forward<Args>(args)...);
}
else if (is_table_array())
{
visitor.visit(static_cast<const table_array&>(*this),
std::forward<Args>(args)...);
}
}
/**
* Writer that can be passed to accept() functions of cpptoml objects and
* will output valid TOML to a stream.
*/
class toml_writer
{
public:
/**
* Construct a toml_writer that will write to the given stream
*/
toml_writer(std::ostream& s, const std::string& indent_space = "\t")
: stream_(s), indent_(indent_space), has_naked_endline_(false)
{
// nothing
}
public:
/**
* Output a base value of the TOML tree.
*/
template <class T>
void visit(const value<T>& v, bool = false)
{
write(v);
}
/**
* Output a table element of the TOML tree
*/
void visit(const table& t, bool in_array = false)
{
write_table_header(in_array);
std::vector<std::string> values;
std::vector<std::string> tables;
for (const auto& i : t)
{
if (i.second->is_table() || i.second->is_table_array())
{
tables.push_back(i.first);
}
else
{
values.push_back(i.first);
}
}
for (unsigned int i = 0; i < values.size(); ++i)
{
path_.push_back(values[i]);
if (i > 0)
endline();
write_table_item_header(*t.get(values[i]));
t.get(values[i])->accept(*this, false);
path_.pop_back();
}
for (unsigned int i = 0; i < tables.size(); ++i)
{
path_.push_back(tables[i]);
if (values.size() > 0 || i > 0)
endline();
write_table_item_header(*t.get(tables[i]));
t.get(tables[i])->accept(*this, false);
path_.pop_back();
}
endline();
}
/**
* Output an array element of the TOML tree
*/
void visit(const array& a, bool = false)
{
write("[");
for (unsigned int i = 0; i < a.get().size(); ++i)
{
if (i > 0)
write(", ");
if (a.get()[i]->is_array())
{
a.get()[i]->as_array()->accept(*this, true);
}
else
{
a.get()[i]->accept(*this, true);
}
}
write("]");
}
/**
* Output a table_array element of the TOML tree
*/
void visit(const table_array& t, bool = false)
{
for (unsigned int j = 0; j < t.get().size(); ++j)
{
if (j > 0)
endline();
t.get()[j]->accept(*this, true);
}
endline();
}
/**
* Escape a string for output.
*/
static std::string escape_string(const std::string& str)
{
std::string res;
for (auto it = str.begin(); it != str.end(); ++it)
{
if (*it == '\b')
{
res += "\\b";
}
else if (*it == '\t')
{
res += "\\t";
}
else if (*it == '\n')
{
res += "\\n";
}
else if (*it == '\f')
{
res += "\\f";
}
else if (*it == '\r')
{
res += "\\r";
}
else if (*it == '"')
{
res += "\\\"";
}
else if (*it == '\\')
{
res += "\\\\";
}
else if ((const uint32_t)*it <= 0x001f)
{
res += "\\u";
std::stringstream ss;
ss << std::hex << static_cast<uint32_t>(*it);
res += ss.str();
}
else
{
res += *it;
}
}
return res;
}
protected:
/**
* Write out a string.
*/
void write(const value<std::string>& v)
{
write("\"");
write(escape_string(v.get()));
write("\"");
}
/**
* Write out a double.
*/
void write(const value<double>& v)
{
std::ios::fmtflags flags{stream_.flags()};
stream_ << std::showpoint;
write(v.get());
stream_.flags(flags);
}
/**
* Write out an integer, local_date, local_time, local_datetime, or
* offset_datetime.
*/
template <class T>
typename std::enable_if<is_one_of<T, int64_t, local_date, local_time,
local_datetime,
offset_datetime>::value>::type
write(const value<T>& v)
{
write(v.get());
}
/**
* Write out a boolean.
*/
void write(const value<bool>& v)
{
write((v.get() ? "true" : "false"));
}
/**
* Write out the header of a table.
*/
void write_table_header(bool in_array = false)
{
if (!path_.empty())
{
indent();
write("[");
if (in_array)
{
write("[");
}
for (unsigned int i = 0; i < path_.size(); ++i)
{
if (i > 0)
{
write(".");
}
if (path_[i].find_first_not_of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
"fghijklmnopqrstuvwxyz0123456789"
"_-")
== std::string::npos)
{
write(path_[i]);
}
else
{
write("\"");
write(escape_string(path_[i]));
write("\"");
}
}
if (in_array)
{
write("]");
}
write("]");
endline();
}
}
/**
* Write out the identifier for an item in a table.
*/
void write_table_item_header(const base& b)
{
if (!b.is_table() && !b.is_table_array())
{
indent();
if (path_.back().find_first_not_of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
"fghijklmnopqrstuvwxyz0123456789"
"_-")
== std::string::npos)
{
write(path_.back());
}
else
{
write("\"");
write(escape_string(path_.back()));
write("\"");
}
write(" = ");
}
}
private:
/**
* Indent the proper number of tabs given the size of
* the path.
*/
void indent()
{
for (std::size_t i = 1; i < path_.size(); ++i)
write(indent_);
}
/**
* Write a value out to the stream.
*/
template <class T>
void write(const T& v)
{
stream_ << v;
has_naked_endline_ = false;
}
/**
* Write an endline out to the stream
*/
void endline()
{
if (!has_naked_endline_)
{
stream_ << "\n";
has_naked_endline_ = true;
}
}
private:
std::ostream& stream_;
const std::string indent_;
std::vector<std::string> path_;
bool has_naked_endline_;
};
inline std::ostream& operator<<(std::ostream& stream, const base& b)
{
toml_writer writer{stream};
b.accept(writer);
return stream;
}
template <class T>
std::ostream& operator<<(std::ostream& stream, const value<T>& v)
{
toml_writer writer{stream};
v.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const table& t)
{
toml_writer writer{stream};
t.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const table_array& t)
{
toml_writer writer{stream};
t.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const array& a)
{
toml_writer writer{stream};
a.accept(writer);
return stream;
}
}
#endif