nix-super/src/libutil/comparator.hh
John Ericson 60b7121d2c Make the Derived Path family of types inductive for dynamic derivations
We want to be able to write down `foo.drv^bar.drv^baz`:
`foo.drv^bar.drv` is the dynamic derivation (since it is itself a
derivation output, `bar.drv` from `foo.drv`).

To that end, we create `Single{Derivation,BuiltPath}` types, that are
very similar except instead of having multiple outputs (in a set or
map), they have a single one. This is for everything to the left of the
rightmost `^`.

`NixStringContextElem` has an analogous change, and now can reuse
`SingleDerivedPath` at the top level. In fact, if we ever get rid of
`DrvDeep`, `NixStringContextElem` could be replaced with
`SingleDerivedPath` entirely!

Important note: some JSON formats have changed.

We already can *produce* dynamic derivations, but we can't refer to them
directly. Today, we can merely express building or example at the top
imperatively over time by building `foo.drv^bar.drv`, and then with a
second nix invocation doing `<result-from-first>^baz`, but this is not
declarative. The ethos of Nix of being able to write down the full plan
everything you want to do, and then execute than plan with a single
command, and for that we need the new inductive form of these types.

Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
Co-authored-by: Valentin Gagarin <valentin.gagarin@tweag.io>
2023-08-10 00:08:32 -04:00

51 lines
1.5 KiB
C++

#pragma once
///@file
/**
* Declare comparison methods without defining them.
*/
#define DECLARE_ONE_CMP(COMPARATOR, MY_TYPE) \
bool operator COMPARATOR(const MY_TYPE & other) const;
#define DECLARE_EQUAL(my_type) \
DECLARE_ONE_CMP(==, my_type)
#define DECLARE_LEQ(my_type) \
DECLARE_ONE_CMP(<, my_type)
#define DECLARE_NEQ(my_type) \
DECLARE_ONE_CMP(!=, my_type)
#define DECLARE_CMP(my_type) \
DECLARE_EQUAL(my_type) \
DECLARE_LEQ(my_type) \
DECLARE_NEQ(my_type)
/**
* Awful hacky generation of the comparison operators by doing a lexicographic
* comparison between the choosen fields.
*
* ```
* GENERATE_CMP(ClassName, me->field1, me->field2, ...)
* ```
*
* will generate comparison operators semantically equivalent to:
*
* ```
* bool operator<(const ClassName& other) {
* return field1 < other.field1 && field2 < other.field2 && ...;
* }
* ```
*/
#define GENERATE_ONE_CMP(COMPARATOR, MY_TYPE, ...) \
bool operator COMPARATOR(const MY_TYPE& other) const { \
__VA_OPT__(const MY_TYPE* me = this;) \
auto fields1 = std::make_tuple( __VA_ARGS__ ); \
__VA_OPT__(me = &other;) \
auto fields2 = std::make_tuple( __VA_ARGS__ ); \
return fields1 COMPARATOR fields2; \
}
#define GENERATE_EQUAL(args...) GENERATE_ONE_CMP(==, args)
#define GENERATE_LEQ(args...) GENERATE_ONE_CMP(<, args)
#define GENERATE_NEQ(args...) GENERATE_ONE_CMP(!=, args)
#define GENERATE_CMP(args...) \
GENERATE_EQUAL(args) \
GENERATE_LEQ(args) \
GENERATE_NEQ(args)