nix-super/src/nix/why-depends.cc
Eelco Dolstra bbe97dff8b Make the Store API more type-safe
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.

Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.

Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
2019-12-10 22:06:05 +01:00

265 lines
8.8 KiB
C++

#include "command.hh"
#include "store-api.hh"
#include "progress-bar.hh"
#include "fs-accessor.hh"
#include "shared.hh"
#include <queue>
using namespace nix;
static std::string hilite(const std::string & s, size_t pos, size_t len,
const std::string & colour = ANSI_RED)
{
return
std::string(s, 0, pos)
+ colour
+ std::string(s, pos, len)
+ ANSI_NORMAL
+ std::string(s, pos + len);
}
static std::string filterPrintable(const std::string & s)
{
std::string res;
for (char c : s)
res += isprint(c) ? c : '.';
return res;
}
struct CmdWhyDepends : SourceExprCommand
{
std::string _package, _dependency;
bool all = false;
CmdWhyDepends()
{
expectArg("package", &_package);
expectArg("dependency", &_dependency);
mkFlag()
.longName("all")
.shortName('a')
.description("show all edges in the dependency graph leading from 'package' to 'dependency', rather than just a shortest path")
.set(&all, true);
}
std::string description() override
{
return "show why a package has another package in its closure";
}
Examples examples() override
{
return {
Example{
"To show one path through the dependency graph leading from Hello to Glibc:",
"nix why-depends nixpkgs.hello nixpkgs.glibc"
},
Example{
"To show all files and paths in the dependency graph leading from Thunderbird to libX11:",
"nix why-depends --all nixpkgs.thunderbird nixpkgs.xorg.libX11"
},
Example{
"To show why Glibc depends on itself:",
"nix why-depends nixpkgs.glibc nixpkgs.glibc"
},
};
}
void run(ref<Store> store) override
{
auto package = parseInstallable(*this, store, _package, false);
auto packagePath = toStorePath(store, Build, package);
auto dependency = parseInstallable(*this, store, _dependency, false);
auto dependencyPath = toStorePath(store, NoBuild, dependency);
auto dependencyPathHash = storePathToHash(store->printStorePath(dependencyPath));
StorePathSet closure;
store->computeFSClosure({packagePath}, closure, false, false);
if (!closure.count(dependencyPath)) {
printError("'%s' does not depend on '%s'", package->what(), dependency->what());
return;
}
stopProgressBar(); // FIXME
auto accessor = store->getFSAccessor();
auto const inf = std::numeric_limits<size_t>::max();
struct Node
{
StorePath path;
StorePathSet refs;
StorePathSet rrefs;
size_t dist = inf;
Node * prev = nullptr;
bool queued = false;
bool visited = false;
};
std::map<StorePath, Node> graph;
for (auto & path : closure)
graph.emplace(path.clone(), Node{path.clone(), cloneStorePathSet(store->queryPathInfo(path)->references)});
// Transpose the graph.
for (auto & node : graph)
for (auto & ref : node.second.refs)
graph.find(ref)->second.rrefs.insert(node.first.clone());
/* Run Dijkstra's shortest path algorithm to get the distance
of every path in the closure to 'dependency'. */
graph[dependencyPath.clone()].dist = 0;
std::priority_queue<Node *> queue;
queue.push(&graph.at(dependencyPath));
while (!queue.empty()) {
auto & node = *queue.top();
queue.pop();
for (auto & rref : node.rrefs) {
auto & node2 = graph.at(rref);
auto dist = node.dist + 1;
if (dist < node2.dist) {
node2.dist = dist;
node2.prev = &node;
if (!node2.queued) {
node2.queued = true;
queue.push(&node2);
}
}
}
}
/* Print the subgraph of nodes that have 'dependency' in their
closure (i.e., that have a non-infinite distance to
'dependency'). Print every edge on a path between `package`
and `dependency`. */
std::function<void(Node &, const string &, const string &)> printNode;
const string treeConn = "╠═══";
const string treeLast = "╚═══";
const string treeLine = "";
const string treeNull = " ";
struct BailOut { };
printNode = [&](Node & node, const string & firstPad, const string & tailPad) {
auto pathS = store->printStorePath(node.path);
assert(node.dist != inf);
std::cout << fmt("%s%s%s%s" ANSI_NORMAL "\n",
firstPad,
node.visited ? "\e[38;5;244m" : "",
firstPad != "" ? "=> " : "",
pathS);
if (node.path == dependencyPath && !all
&& packagePath != dependencyPath)
throw BailOut();
if (node.visited) return;
node.visited = true;
/* Sort the references by distance to `dependency` to
ensure that the shortest path is printed first. */
std::multimap<size_t, Node *> refs;
std::set<std::string> hashes;
for (auto & ref : node.refs) {
if (ref == node.path && packagePath != dependencyPath) continue;
auto & node2 = graph.at(ref);
if (node2.dist == inf) continue;
refs.emplace(node2.dist, &node2);
hashes.insert(storePathToHash(store->printStorePath(node2.path)));
}
/* For each reference, find the files and symlinks that
contain the reference. */
std::map<std::string, Strings> hits;
std::function<void(const Path &)> visitPath;
visitPath = [&](const Path & p) {
auto st = accessor->stat(p);
auto p2 = p == pathS ? "/" : std::string(p, pathS.size() + 1);
auto getColour = [&](const std::string & hash) {
return hash == dependencyPathHash ? ANSI_GREEN : ANSI_BLUE;
};
if (st.type == FSAccessor::Type::tDirectory) {
auto names = accessor->readDirectory(p);
for (auto & name : names)
visitPath(p + "/" + name);
}
else if (st.type == FSAccessor::Type::tRegular) {
auto contents = accessor->readFile(p);
for (auto & hash : hashes) {
auto pos = contents.find(hash);
if (pos != std::string::npos) {
size_t margin = 32;
auto pos2 = pos >= margin ? pos - margin : 0;
hits[hash].emplace_back(fmt("%s: …%s…\n",
p2,
hilite(filterPrintable(
std::string(contents, pos2, pos - pos2 + hash.size() + margin)),
pos - pos2, storePathHashLen,
getColour(hash))));
}
}
}
else if (st.type == FSAccessor::Type::tSymlink) {
auto target = accessor->readLink(p);
for (auto & hash : hashes) {
auto pos = target.find(hash);
if (pos != std::string::npos)
hits[hash].emplace_back(fmt("%s -> %s\n", p2,
hilite(target, pos, storePathHashLen, getColour(hash))));
}
}
};
// FIXME: should use scanForReferences().
visitPath(pathS);
RunPager pager;
for (auto & ref : refs) {
auto hash = storePathToHash(store->printStorePath(ref.second->path));
bool last = all ? ref == *refs.rbegin() : true;
for (auto & hit : hits[hash]) {
bool first = hit == *hits[hash].begin();
std::cout << tailPad
<< (first ? (last ? treeLast : treeConn) : (last ? treeNull : treeLine))
<< hit;
if (!all) break;
}
printNode(*ref.second,
tailPad + (last ? treeNull : treeLine),
tailPad + (last ? treeNull : treeLine));
}
};
try {
printNode(graph.at(packagePath), "", "");
} catch (BailOut & ) { }
}
};
static auto r1 = registerCommand<CmdWhyDepends>("why-depends");