nix-super/src/libstore/length-prefixed-protocol-helper.hh
John Ericson be81764320 Factor out bits of the worker protocol to use elsewhere
This introduces some shared infrastructure for our notion of protocols.
We can then define multiple protocols in terms of that notion.
We an also express how particular protocols depend on each other.

For example, we can define a common protocol and a worker protocol,
where the second depends on the first in terms of the data types it can
read and write.

The "serve" protocol can just use the common one for now, but will
eventually need its own machinary just like the worker protocol for
version-aware serialisers
2023-10-09 16:55:12 -04:00

163 lines
4.6 KiB
C++

#pragma once
/**
* @file Reusable serialisers for serialization container types in a
* length-prefixed manner.
*
* Used by both the Worker and Serve protocols.
*/
#include "types.hh"
namespace nix {
class Store;
/**
* Reusable serialisers for serialization container types in a
* length-prefixed manner.
*
* @param T The type of the collection being serialised
*
* @param Inner This the most important parameter; this is the "inner"
* protocol. The user of this will substitute `MyProtocol` or similar
* when making a `MyProtocol::Serialiser<Collection<T>>`. Note that the
* inside is allowed to call to call `Inner::Serialiser` on different
* types. This is especially important for `std::map` which doesn't have
* a single `T` but one `K` and one `V`.
*/
template<class Inner, typename T>
struct LengthPrefixedProtoHelper;
/*!
* \typedef LengthPrefixedProtoHelper::S
*
* Read this as simply `using S = Inner::Serialise;`.
*
* It would be nice to use that directly, but C++ doesn't seem to allow
* it. The `typename` keyword needed to refer to `Inner` seems to greedy
* (low precedence), and then C++ complains that `Serialise` is not a
* type parameter but a real type.
*
* Making this `S` alias seems to be the only way to avoid these issues.
*/
#define LENGTH_PREFIXED_PROTO_HELPER(Inner, T) \
struct LengthPrefixedProtoHelper< Inner, T > \
{ \
static T read(const Store & store, typename Inner::ReadConn conn); \
static void write(const Store & store, typename Inner::WriteConn conn, const T & str); \
private: \
template<typename U> using S = typename Inner::template Serialise<U>; \
}
template<class Inner, typename T>
LENGTH_PREFIXED_PROTO_HELPER(Inner, std::vector<T>);
template<class Inner, typename T>
LENGTH_PREFIXED_PROTO_HELPER(Inner, std::set<T>);
template<class Inner, typename... Ts>
LENGTH_PREFIXED_PROTO_HELPER(Inner, std::tuple<Ts...>);
template<class Inner, typename K, typename V>
#define _X std::map<K, V>
LENGTH_PREFIXED_PROTO_HELPER(Inner, _X);
#undef _X
template<class Inner, typename T>
std::vector<T>
LengthPrefixedProtoHelper<Inner, std::vector<T>>::read(
const Store & store, typename Inner::ReadConn conn)
{
std::vector<T> resSet;
auto size = readNum<size_t>(conn.from);
while (size--) {
resSet.push_back(S<T>::read(store, conn));
}
return resSet;
}
template<class Inner, typename T>
void
LengthPrefixedProtoHelper<Inner, std::vector<T>>::write(
const Store & store, typename Inner::WriteConn conn, const std::vector<T> & resSet)
{
conn.to << resSet.size();
for (auto & key : resSet) {
S<T>::write(store, conn, key);
}
}
template<class Inner, typename T>
std::set<T>
LengthPrefixedProtoHelper<Inner, std::set<T>>::read(
const Store & store, typename Inner::ReadConn conn)
{
std::set<T> resSet;
auto size = readNum<size_t>(conn.from);
while (size--) {
resSet.insert(S<T>::read(store, conn));
}
return resSet;
}
template<class Inner, typename T>
void
LengthPrefixedProtoHelper<Inner, std::set<T>>::write(
const Store & store, typename Inner::WriteConn conn, const std::set<T> & resSet)
{
conn.to << resSet.size();
for (auto & key : resSet) {
S<T>::write(store, conn, key);
}
}
template<class Inner, typename K, typename V>
std::map<K, V>
LengthPrefixedProtoHelper<Inner, std::map<K, V>>::read(
const Store & store, typename Inner::ReadConn conn)
{
std::map<K, V> resMap;
auto size = readNum<size_t>(conn.from);
while (size--) {
auto k = S<K>::read(store, conn);
auto v = S<V>::read(store, conn);
resMap.insert_or_assign(std::move(k), std::move(v));
}
return resMap;
}
template<class Inner, typename K, typename V>
void
LengthPrefixedProtoHelper<Inner, std::map<K, V>>::write(
const Store & store, typename Inner::WriteConn conn, const std::map<K, V> & resMap)
{
conn.to << resMap.size();
for (auto & i : resMap) {
S<K>::write(store, conn, i.first);
S<V>::write(store, conn, i.second);
}
}
template<class Inner, typename... Ts>
std::tuple<Ts...>
LengthPrefixedProtoHelper<Inner, std::tuple<Ts...>>::read(
const Store & store, typename Inner::ReadConn conn)
{
return std::tuple<Ts...> {
S<Ts>::read(store, conn)...,
};
}
template<class Inner, typename... Ts>
void
LengthPrefixedProtoHelper<Inner, std::tuple<Ts...>>::write(
const Store & store, typename Inner::WriteConn conn, const std::tuple<Ts...> & res)
{
std::apply([&]<typename... Us>(const Us &... args) {
(S<Us>::write(store, conn, args), ...);
}, res);
}
}