depot/packages/networking/ipfs-cluster/cluster.go

2300 lines
61 KiB
Go

package ipfscluster
import (
"context"
"encoding/json"
"errors"
"fmt"
"mime/multipart"
"sync"
"time"
"github.com/ipfs-cluster/ipfs-cluster/adder"
"github.com/ipfs-cluster/ipfs-cluster/adder/sharding"
"github.com/ipfs-cluster/ipfs-cluster/adder/single"
"github.com/ipfs-cluster/ipfs-cluster/api"
"github.com/ipfs-cluster/ipfs-cluster/pstoremgr"
"github.com/ipfs-cluster/ipfs-cluster/rpcutil"
"github.com/ipfs-cluster/ipfs-cluster/state"
"github.com/ipfs-cluster/ipfs-cluster/version"
"go.uber.org/multierr"
ds "github.com/ipfs/go-datastore"
host "github.com/libp2p/go-libp2p-core/host"
peer "github.com/libp2p/go-libp2p-core/peer"
peerstore "github.com/libp2p/go-libp2p-core/peerstore"
rpc "github.com/libp2p/go-libp2p-gorpc"
dual "github.com/libp2p/go-libp2p-kad-dht/dual"
mdns "github.com/libp2p/go-libp2p/p2p/discovery/mdns"
ma "github.com/multiformats/go-multiaddr"
ocgorpc "github.com/lanzafame/go-libp2p-ocgorpc"
trace "go.opencensus.io/trace"
)
// ReadyTimeout specifies the time before giving up
// during startup (waiting for consensus to be ready)
// It may need adjustment according to timeouts in the
// consensus layer.
var ReadyTimeout = 30 * time.Second
const (
pingMetricName = "ping"
bootstrapCount = 3
reBootstrapInterval = 30 * time.Second
mdnsServiceTag = "_ipfs-cluster-discovery._udp"
maxAlerts = 1000
)
var errFollowerMode = errors.New("this peer is configured to be in follower mode. Write operations are disabled")
// Cluster is the main IPFS cluster component. It provides
// the go-API for it and orchestrates the components that make up the system.
type Cluster struct {
ctx context.Context
cancel func()
id peer.ID
config *Config
host host.Host
dht *dual.DHT
discovery mdns.Service
datastore ds.Datastore
rpcServer *rpc.Server
rpcClient *rpc.Client
peerManager *pstoremgr.Manager
consensus Consensus
apis []API
ipfs IPFSConnector
tracker PinTracker
monitor PeerMonitor
allocator PinAllocator
informers []Informer
tracer Tracer
alerts []api.Alert
alertsMux sync.Mutex
doneCh chan struct{}
readyCh chan struct{}
readyB bool
wg sync.WaitGroup
// peerAdd
paMux sync.Mutex
// shutdown function and related variables
shutdownLock sync.Mutex
shutdownB bool
removed bool
curPingVal pingValue
}
// NewCluster builds a new IPFS Cluster peer. It initializes a LibP2P host,
// creates and RPC Server and client and sets up all components.
//
// The new cluster peer may still be performing initialization tasks when
// this call returns (consensus may still be bootstrapping). Use Cluster.Ready()
// if you need to wait until the peer is fully up.
func NewCluster(
ctx context.Context,
host host.Host,
dht *dual.DHT,
cfg *Config,
datastore ds.Datastore,
consensus Consensus,
apis []API,
ipfs IPFSConnector,
tracker PinTracker,
monitor PeerMonitor,
allocator PinAllocator,
informers []Informer,
tracer Tracer,
) (*Cluster, error) {
err := cfg.Validate()
if err != nil {
return nil, err
}
if host == nil {
return nil, errors.New("cluster host is nil")
}
if len(informers) == 0 {
return nil, errors.New("no informers are passed")
}
ctx, cancel := context.WithCancel(ctx)
listenAddrs := ""
for _, addr := range host.Addrs() {
listenAddrs += fmt.Sprintf(" %s/p2p/%s\n", addr, host.ID().Pretty())
}
logger.Infof("IPFS Cluster v%s listening on:\n%s\n", version.Version, listenAddrs)
peerManager := pstoremgr.New(ctx, host, cfg.GetPeerstorePath())
var mdnsSvc mdns.Service
if cfg.MDNSInterval > 0 {
mdnsSvc = mdns.NewMdnsService(host, mdnsServiceTag, peerManager)
err = mdnsSvc.Start()
if err != nil {
logger.Warnf("mDNS could not be started: %s", err)
}
}
c := &Cluster{
ctx: ctx,
cancel: cancel,
id: host.ID(),
config: cfg,
host: host,
dht: dht,
discovery: mdnsSvc,
datastore: datastore,
consensus: consensus,
apis: apis,
ipfs: ipfs,
tracker: tracker,
monitor: monitor,
allocator: allocator,
informers: informers,
tracer: tracer,
alerts: []api.Alert{},
peerManager: peerManager,
shutdownB: false,
removed: false,
doneCh: make(chan struct{}),
readyCh: make(chan struct{}),
readyB: false,
}
// Import known cluster peers from peerstore file and config. Set
// a non permanent TTL.
c.peerManager.ImportPeersFromPeerstore(false, peerstore.AddressTTL)
c.peerManager.ImportPeers(c.config.PeerAddresses, false, peerstore.AddressTTL)
// Attempt to connect to some peers (up to bootstrapCount)
connectedPeers := c.peerManager.Bootstrap(bootstrapCount)
// We cannot warn when count is low as this as this is normal if going
// to Join() later.
logger.Debugf("bootstrap count %d", len(connectedPeers))
// Log a ping metric for every connected peer. This will make them
// visible as peers without having to wait for them to send one.
for _, p := range connectedPeers {
if err := c.logPingMetric(ctx, p); err != nil {
logger.Warn(err)
}
}
// After setupRPC components can do their tasks with a fully operative
// routed libp2p host with some connections and a working DHT (hopefully).
err = c.setupRPC()
if err != nil {
c.Shutdown(ctx)
return nil, err
}
c.setupRPCClients()
// Note: It is very important to first call Add() once in a non-racy
// place
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.ready(ReadyTimeout)
c.run()
}()
return c, nil
}
func (c *Cluster) setupRPC() error {
rpcServer, err := newRPCServer(c)
if err != nil {
return err
}
c.rpcServer = rpcServer
var rpcClient *rpc.Client
if c.config.Tracing {
csh := &ocgorpc.ClientHandler{}
rpcClient = rpc.NewClientWithServer(
c.host,
version.RPCProtocol,
rpcServer,
rpc.WithClientStatsHandler(csh),
)
} else {
rpcClient = rpc.NewClientWithServer(c.host, version.RPCProtocol, rpcServer)
}
c.rpcClient = rpcClient
return nil
}
func (c *Cluster) setupRPCClients() {
c.ipfs.SetClient(c.rpcClient)
c.tracker.SetClient(c.rpcClient)
for _, api := range c.apis {
api.SetClient(c.rpcClient)
}
c.consensus.SetClient(c.rpcClient)
c.monitor.SetClient(c.rpcClient)
c.allocator.SetClient(c.rpcClient)
for _, informer := range c.informers {
informer.SetClient(c.rpcClient)
}
}
// watchPinset triggers recurrent operations that loop on the pinset.
func (c *Cluster) watchPinset() {
ctx, span := trace.StartSpan(c.ctx, "cluster/watchPinset")
defer span.End()
stateSyncTimer := time.NewTimer(c.config.StateSyncInterval)
// Upon start, every item in the state that is not pinned will appear
// as PinError when doing a Status, we should proceed to recover
// (try pinning) all of those right away.
recoverTimer := time.NewTimer(0) // 0 so that it does an initial recover right away
// This prevents doing an StateSync while doing a RecoverAllLocal,
// which is intended behavior as for very large pinsets
for {
select {
case <-stateSyncTimer.C:
logger.Debug("auto-triggering StateSync()")
c.StateSync(ctx)
stateSyncTimer.Reset(c.config.StateSyncInterval)
case <-recoverTimer.C:
logger.Debug("auto-triggering RecoverAllLocal()")
out := make(chan api.PinInfo, 1024)
go func() {
for range out {
}
}()
err := c.RecoverAllLocal(ctx, out)
if err != nil {
logger.Error(err)
}
recoverTimer.Reset(c.config.PinRecoverInterval)
case <-c.ctx.Done():
if !stateSyncTimer.Stop() {
<-stateSyncTimer.C
}
if !recoverTimer.Stop() {
<-recoverTimer.C
}
return
}
}
}
// returns the smallest ttl from the metrics pushed by the informer.
func (c *Cluster) sendInformerMetrics(ctx context.Context, informer Informer) (time.Duration, error) {
ctx, span := trace.StartSpan(ctx, "cluster/sendInformerMetric")
defer span.End()
var minTTL time.Duration
var errors error
metrics := informer.GetMetrics(ctx)
if len(metrics) == 0 {
logger.Errorf("informer %s produced no metrics", informer.Name())
return minTTL, nil
}
for _, metric := range metrics {
if metric.Discard() { // do not publish invalid metrics
// the tags informer creates an invalid metric
// when no tags are defined.
continue
}
metric.Peer = c.id
ttl := metric.GetTTL()
if ttl > 0 && (ttl < minTTL || minTTL == 0) {
minTTL = ttl
}
err := c.monitor.PublishMetric(ctx, metric)
if multierr.AppendInto(&errors, err) {
logger.Warnf("error sending metric %s: %s", metric.Name, err)
}
}
return minTTL, errors
}
func (c *Cluster) sendInformersMetrics(ctx context.Context) error {
ctx, span := trace.StartSpan(ctx, "cluster/sendInformersMetrics")
defer span.End()
var errors error
for _, informer := range c.informers {
_, err := c.sendInformerMetrics(ctx, informer)
if multierr.AppendInto(&errors, err) {
logger.Warnf("informer %s did not send all metrics", informer.Name())
}
}
return errors
}
// pushInformerMetrics loops and publishes informers metrics using the
// cluster monitor. Metrics are pushed normally at a TTL/2 rate. If an error
// occurs, they are pushed at a TTL/4 rate.
func (c *Cluster) pushInformerMetrics(ctx context.Context, informer Informer) {
ctx, span := trace.StartSpan(ctx, "cluster/pushInformerMetrics")
defer span.End()
timer := time.NewTimer(0) // fire immediately first
// retries counts how many retries we have made
retries := 0
// retryWarnMod controls how often do we log
// "error broadcasting metric".
// It will do it in the first error, and then on every
// 10th.
retryWarnMod := 10
for {
select {
case <-ctx.Done():
return
case <-timer.C:
// wait
}
minTTL, err := c.sendInformerMetrics(ctx, informer)
if minTTL == 0 {
minTTL = 30 * time.Second
}
if err != nil {
if (retries % retryWarnMod) == 0 {
logger.Errorf("error broadcasting metric: %s", err)
retries++
}
// retry sooner
timer.Reset(minTTL / 4)
continue
}
retries = 0
// send metric again in TTL/2
timer.Reset(minTTL / 2)
}
}
func (c *Cluster) sendPingMetric(ctx context.Context) (api.Metric, error) {
ctx, span := trace.StartSpan(ctx, "cluster/sendPingMetric")
defer span.End()
id := c.ID(ctx)
newPingVal := pingValue{
Peername: id.Peername,
IPFSID: id.IPFS.ID,
IPFSAddresses: publicIPFSAddresses(id.IPFS.Addresses),
}
if c.curPingVal.Valid() &&
!newPingVal.Valid() { // i.e. ipfs down
newPingVal = c.curPingVal // use last good value
}
c.curPingVal = newPingVal
v, err := json.Marshal(newPingVal)
if err != nil {
logger.Error(err)
// continue anyways
}
metric := api.Metric{
Name: pingMetricName,
Peer: c.id,
Valid: true,
Value: string(v),
}
metric.SetTTL(c.config.MonitorPingInterval * 2)
return metric, c.monitor.PublishMetric(ctx, metric)
}
// logPingMetric logs a ping metric as if it had been sent from PID. It is
// used to make peers appear available as soon as we connect to them (without
// having to wait for them to broadcast a metric).
//
// We avoid specifically sending a metric to a peer when we "connect" to it
// because: a) this requires an extra. OPEN RPC endpoint (LogMetric) that can
// be called by everyone b) We have no way of verifying that the peer ID in a
// metric pushed is actually the issuer of the metric (something the regular
// "pubsub" way of pushing metrics allows (by verifying the signature on the
// message). Thus, this reduces chances of abuse until we have something
// better.
func (c *Cluster) logPingMetric(ctx context.Context, pid peer.ID) error {
m := api.Metric{
Name: pingMetricName,
Peer: pid,
Valid: true,
}
m.SetTTL(c.config.MonitorPingInterval * 2)
return c.monitor.LogMetric(ctx, m)
}
func (c *Cluster) pushPingMetrics(ctx context.Context) {
ctx, span := trace.StartSpan(ctx, "cluster/pushPingMetrics")
defer span.End()
ticker := time.NewTicker(c.config.MonitorPingInterval)
for {
select {
case <-ctx.Done():
return
default:
}
c.sendPingMetric(ctx)
select {
case <-ctx.Done():
return
case <-ticker.C:
}
}
}
// Alerts returns the last alerts recorded by this cluster peer with the most
// recent first.
func (c *Cluster) Alerts() []api.Alert {
c.alertsMux.Lock()
alerts := make([]api.Alert, len(c.alerts))
{
total := len(alerts)
for i, a := range c.alerts {
alerts[total-1-i] = a
}
}
c.alertsMux.Unlock()
return alerts
}
// read the alerts channel from the monitor and triggers repins
func (c *Cluster) alertsHandler() {
for {
select {
case <-c.ctx.Done():
return
case alrt := <-c.monitor.Alerts():
// Follower peers do not care about alerts.
// They can do nothing about them.
if c.config.FollowerMode {
continue
}
logger.Warnf("metric alert for %s: Peer: %s.", alrt.Name, alrt.Peer)
c.alertsMux.Lock()
{
if len(c.alerts) > maxAlerts {
c.alerts = c.alerts[:0]
}
c.alerts = append(c.alerts, alrt)
}
c.alertsMux.Unlock()
if alrt.Name != pingMetricName {
continue // only handle ping alerts
}
if c.config.DisableRepinning {
logger.Debugf("repinning is disabled. Will not re-allocate pins on alerts")
return
}
cState, err := c.consensus.State(c.ctx)
if err != nil {
logger.Warn(err)
return
}
distance, err := c.distances(c.ctx, alrt.Peer)
if err != nil {
logger.Warn(err)
return
}
pinCh := make(chan api.Pin, 1024)
go func() {
err = cState.List(c.ctx, pinCh)
if err != nil {
logger.Warn(err)
}
}()
for pin := range pinCh {
if containsPeer(pin.Allocations, alrt.Peer) && distance.isClosest(pin.Cid) {
c.repinFromPeer(c.ctx, alrt.Peer, pin)
}
}
}
}
}
// detects any changes in the peerset and saves the configuration. When it
// detects that we have been removed from the peerset, it shuts down this peer.
func (c *Cluster) watchPeers() {
ticker := time.NewTicker(c.config.PeerWatchInterval)
defer ticker.Stop()
for {
select {
case <-c.ctx.Done():
return
default:
}
select {
case <-c.ctx.Done():
return
case <-ticker.C:
//logger.Debugf("%s watching peers", c.id)
hasMe := false
peers, err := c.consensus.Peers(c.ctx)
if err != nil {
logger.Error(err)
continue
}
for _, p := range peers {
if p == c.id {
hasMe = true
break
}
}
if !hasMe {
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
logger.Info("peer no longer in peerset. Initiating shutdown")
c.removed = true
go c.Shutdown(c.ctx)
return
}
}
}
}
// reBootstrap regularly attempts to bootstrap (re-connect to peers from the
// peerstore). This should ensure that we auto-recover from situations in
// which the network was completely gone and we lost all peers.
func (c *Cluster) reBootstrap() {
ticker := time.NewTicker(reBootstrapInterval)
defer ticker.Stop()
for {
select {
case <-c.ctx.Done():
return
case <-ticker.C:
connected := c.peerManager.Bootstrap(bootstrapCount)
for _, p := range connected {
logger.Infof("reconnected to %s", p)
}
}
}
}
// find all Cids pinned to a given peer and triggers re-pins on them.
func (c *Cluster) vacatePeer(ctx context.Context, p peer.ID) {
ctx, span := trace.StartSpan(ctx, "cluster/vacatePeer")
defer span.End()
if c.config.DisableRepinning {
logger.Warnf("repinning is disabled. Will not re-allocate cids from %s", p.Pretty())
return
}
cState, err := c.consensus.State(ctx)
if err != nil {
logger.Warn(err)
return
}
pinCh := make(chan api.Pin, 1024)
go func() {
err = cState.List(ctx, pinCh)
if err != nil {
logger.Warn(err)
}
}()
for pin := range pinCh {
if containsPeer(pin.Allocations, p) {
c.repinFromPeer(ctx, p, pin)
}
}
}
// repinFromPeer triggers a repin on a given pin object blacklisting one of the
// allocations.
func (c *Cluster) repinFromPeer(ctx context.Context, p peer.ID, pin api.Pin) {
ctx, span := trace.StartSpan(ctx, "cluster/repinFromPeer")
defer span.End()
pin.Allocations = nil // force re-allocations
// note that pin() should not result in different allocations
// if we are not under the replication-factor min.
_, ok, err := c.pin(ctx, pin, []peer.ID{p})
if ok && err == nil {
logger.Infof("repinned %s out of %s", pin.Cid, p.Pretty())
}
}
// run launches some go-routines which live throughout the cluster's life
func (c *Cluster) run() {
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.watchPinset()
}()
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.pushPingMetrics(c.ctx)
}()
c.wg.Add(len(c.informers))
for _, informer := range c.informers {
go func(inf Informer) {
defer c.wg.Done()
c.pushInformerMetrics(c.ctx, inf)
}(informer)
}
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.watchPeers()
}()
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.alertsHandler()
}()
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.reBootstrap()
}()
}
func (c *Cluster) ready(timeout time.Duration) {
ctx, span := trace.StartSpan(c.ctx, "cluster/ready")
defer span.End()
// We bootstrapped first because with dirty state consensus
// may have a peerset and not find a leader so we cannot wait
// for it.
timer := time.NewTimer(timeout)
select {
case <-timer.C:
logger.Error("***** ipfs-cluster consensus start timed out (tips below) *****")
logger.Error(`
**************************************************
This peer was not able to become part of the cluster.
This might be due to one or several causes:
- Check the logs above this message for errors
- Check that there is connectivity to the "peers" multiaddresses
- Check that all cluster peers are using the same "secret"
- Check that this peer is reachable on its "listen_multiaddress" by all peers
- Check that the current cluster is healthy (has a leader). Otherwise make
sure to start enough peers so that a leader election can happen.
- Check that the peer(s) you are trying to connect to is running the
same version of IPFS-cluster.
**************************************************
`)
c.Shutdown(ctx)
return
case <-c.consensus.Ready(ctx):
// Consensus ready means the state is up to date.
case <-c.ctx.Done():
return
}
// Cluster is ready.
peers, err := c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
c.Shutdown(ctx)
return
}
logger.Info("Cluster Peers (without including ourselves):")
if len(peers) == 1 {
logger.Info(" - No other peers")
}
for _, p := range peers {
if p != c.id {
logger.Infof(" - %s", p.Pretty())
}
}
close(c.readyCh)
c.shutdownLock.Lock()
c.readyB = true
c.shutdownLock.Unlock()
logger.Info("** IPFS Cluster is READY **")
}
// Ready returns a channel which signals when this peer is
// fully initialized (including consensus).
func (c *Cluster) Ready() <-chan struct{} {
return c.readyCh
}
// Shutdown performs all the necessary operations to shutdown
// the IPFS Cluster peer:
// * Save peerstore with the current peers
// * Remove itself from consensus when LeaveOnShutdown is set
// * It Shutdowns all the components
// * Collects all goroutines
//
// Shutdown does not close the libp2p host, the DHT, the datastore or
// generally anything that Cluster did not create.
func (c *Cluster) Shutdown(ctx context.Context) error {
_, span := trace.StartSpan(ctx, "cluster/Shutdown")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
if c.shutdownB {
logger.Debug("Cluster is already shutdown")
return nil
}
logger.Info("shutting down Cluster")
// Shutdown APIs first, avoids more requests coming through.
for _, api := range c.apis {
if err := api.Shutdown(ctx); err != nil {
logger.Errorf("error stopping API: %s", err)
return err
}
}
// Cancel discovery service (this shutdowns announcing). Handling
// entries is canceled along with the context below.
if c.discovery != nil {
c.discovery.Close()
}
// Try to store peerset file for all known peers whatsoever
// if we got ready (otherwise, don't overwrite anything)
if c.readyB {
// Ignoring error since it's a best-effort
c.peerManager.SavePeerstoreForPeers(c.host.Peerstore().Peers())
}
// Only attempt to leave if:
// - consensus is initialized
// - cluster was ready (no bootstrapping error)
// - We are not removed already (means watchPeers() called us)
if c.consensus != nil && c.config.LeaveOnShutdown && c.readyB && !c.removed {
c.removed = true
_, err := c.consensus.Peers(ctx)
if err == nil {
// best effort
logger.Warn("attempting to leave the cluster. This may take some seconds")
err := c.consensus.RmPeer(ctx, c.id)
if err != nil {
logger.Error("leaving cluster: " + err.Error())
}
}
}
if con := c.consensus; con != nil {
if err := con.Shutdown(ctx); err != nil {
logger.Errorf("error stopping consensus: %s", err)
return err
}
}
// We left the cluster or were removed. Remove any consensus-specific
// state.
if c.removed && c.readyB {
err := c.consensus.Clean(ctx)
if err != nil {
logger.Error("cleaning consensus: ", err)
}
}
if err := c.monitor.Shutdown(ctx); err != nil {
logger.Errorf("error stopping monitor: %s", err)
return err
}
if err := c.ipfs.Shutdown(ctx); err != nil {
logger.Errorf("error stopping IPFS Connector: %s", err)
return err
}
if err := c.tracker.Shutdown(ctx); err != nil {
logger.Errorf("error stopping PinTracker: %s", err)
return err
}
for _, inf := range c.informers {
if err := inf.Shutdown(ctx); err != nil {
logger.Errorf("error stopping informer: %s", err)
return err
}
}
if err := c.tracer.Shutdown(ctx); err != nil {
logger.Errorf("error stopping Tracer: %s", err)
return err
}
c.cancel()
c.wg.Wait()
c.shutdownB = true
close(c.doneCh)
return nil
}
// Done provides a way to learn if the Peer has been shutdown
// (for example, because it has been removed from the Cluster)
func (c *Cluster) Done() <-chan struct{} {
return c.doneCh
}
// ID returns information about the Cluster peer
func (c *Cluster) ID(ctx context.Context) api.ID {
_, span := trace.StartSpan(ctx, "cluster/ID")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
// ignore error since it is included in response object
ipfsID, err := c.ipfs.ID(ctx)
if err != nil {
ipfsID = api.IPFSID{
Error: err.Error(),
}
}
var addrs []api.Multiaddr
mAddrs, err := peer.AddrInfoToP2pAddrs(&peer.AddrInfo{ID: c.id, Addrs: c.host.Addrs()})
if err == nil {
for _, mAddr := range mAddrs {
addrs = append(addrs, api.NewMultiaddrWithValue(mAddr))
}
}
peers := []peer.ID{}
// This method might get called very early by a remote peer
// and might catch us when consensus is not set
if c.consensus != nil {
peers, _ = c.consensus.Peers(ctx)
}
clusterPeerInfos := c.peerManager.PeerInfos(peers)
addresses := []api.Multiaddr{}
for _, pinfo := range clusterPeerInfos {
addrs, err := peer.AddrInfoToP2pAddrs(&pinfo)
if err != nil {
continue
}
for _, a := range addrs {
addresses = append(addresses, api.NewMultiaddrWithValue(a))
}
}
id := api.ID{
ID: c.id,
// PublicKey: c.host.Peerstore().PubKey(c.id),
Addresses: addrs,
ClusterPeers: peers,
ClusterPeersAddresses: addresses,
Version: version.Version.String(),
RPCProtocolVersion: version.RPCProtocol,
IPFS: ipfsID,
Peername: c.config.Peername,
}
if err != nil {
id.Error = err.Error()
}
return id
}
// PeerAdd adds a new peer to this Cluster.
//
// For it to work well, the new peer should be discoverable
// (part of our peerstore or connected to one of the existing peers)
// and reachable. Since PeerAdd allows to add peers which are
// not running, or reachable, it is recommended to call Join() from the
// new peer instead.
//
// The new peer ID will be passed to the consensus
// component to be added to the peerset.
func (c *Cluster) PeerAdd(ctx context.Context, pid peer.ID) (*api.ID, error) {
_, span := trace.StartSpan(ctx, "cluster/PeerAdd")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
// starting 10 nodes on the same box for testing
// causes deadlock and a global lock here
// seems to help.
c.paMux.Lock()
defer c.paMux.Unlock()
logger.Debugf("peerAdd called with %s", pid.Pretty())
// Let the consensus layer be aware of this peer
err := c.consensus.AddPeer(ctx, pid)
if err != nil {
logger.Error(err)
id := &api.ID{ID: pid, Error: err.Error()}
return id, err
}
logger.Info("Peer added ", pid.Pretty())
addedID, err := c.getIDForPeer(ctx, pid)
if err != nil {
return addedID, err
}
if !containsPeer(addedID.ClusterPeers, c.id) {
addedID.ClusterPeers = append(addedID.ClusterPeers, c.id)
}
return addedID, nil
}
// PeerRemove removes a peer from this Cluster.
//
// The peer will be removed from the consensus peerset.
// This may first trigger repinnings for all content if not disabled.
func (c *Cluster) PeerRemove(ctx context.Context, pid peer.ID) error {
_, span := trace.StartSpan(ctx, "cluster/PeerRemove")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
// We need to repin before removing the peer, otherwise, it won't
// be able to submit the pins.
logger.Infof("re-allocating all CIDs directly associated to %s", pid)
c.vacatePeer(ctx, pid)
err := c.consensus.RmPeer(ctx, pid)
if err != nil {
logger.Error(err)
return err
}
logger.Info("Peer removed ", pid.Pretty())
return nil
}
// Join adds this peer to an existing cluster by bootstrapping to a
// given multiaddress. It works by calling PeerAdd on the destination
// cluster and making sure that the new peer is ready to discover and contact
// the rest.
func (c *Cluster) Join(ctx context.Context, addr ma.Multiaddr) error {
_, span := trace.StartSpan(ctx, "cluster/Join")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
logger.Debugf("Join(%s)", addr)
// Add peer to peerstore so we can talk to it
pid, err := c.peerManager.ImportPeer(addr, false, peerstore.PermanentAddrTTL)
if err != nil {
return err
}
if pid == c.id {
return nil
}
// Note that PeerAdd() on the remote peer will
// figure out what our real address is (obviously not
// ListenAddr).
var myID api.ID
err = c.rpcClient.CallContext(
ctx,
pid,
"Cluster",
"PeerAdd",
c.id,
&myID,
)
if err != nil {
logger.Error(err)
return err
}
// Log a fake but valid metric from the peer we are
// contacting. This will signal a CRDT component that
// we know that peer since we have metrics for it without
// having to wait for the next metric round.
if err := c.logPingMetric(ctx, pid); err != nil {
logger.Warn(err)
}
// Broadcast our metrics to the world
err = c.sendInformersMetrics(ctx)
if err != nil {
logger.Warn(err)
}
_, err = c.sendPingMetric(ctx)
if err != nil {
logger.Warn(err)
}
// We need to trigger a DHT bootstrap asap for this peer to not be
// lost if the peer it bootstrapped to goes down. We do this manually
// by triggering 1 round of bootstrap in the background.
// Note that our regular bootstrap process is still running in the
// background since we created the cluster.
c.wg.Add(1)
go func() {
defer c.wg.Done()
select {
case err := <-c.dht.LAN.RefreshRoutingTable():
if err != nil {
// this error is quite chatty
// on single peer clusters
logger.Debug(err)
}
case <-c.ctx.Done():
return
}
select {
case err := <-c.dht.WAN.RefreshRoutingTable():
if err != nil {
// this error is quite chatty
// on single peer clusters
logger.Debug(err)
}
case <-c.ctx.Done():
return
}
}()
// ConnectSwarms in the background after a while, when we have likely
// received some metrics.
time.AfterFunc(c.config.MonitorPingInterval, func() {
c.ipfs.ConnectSwarms(ctx)
})
// wait for leader and for state to catch up
// then sync
err = c.consensus.WaitForSync(ctx)
if err != nil {
logger.Error(err)
return err
}
// Start pinning items in the state that are not on IPFS yet.
out := make(chan api.PinInfo, 1024)
// discard outputs
go func() {
for range out {
}
}()
go c.RecoverAllLocal(ctx, out)
logger.Infof("%s: joined %s's cluster", c.id.Pretty(), pid.Pretty())
return nil
}
// Distances returns a distance checker using current trusted peers.
// It can optionally receive a peer ID to exclude from the checks.
func (c *Cluster) distances(ctx context.Context, exclude peer.ID) (*distanceChecker, error) {
trustedPeers, err := c.getTrustedPeers(ctx, exclude)
if err != nil {
logger.Error("could not get trusted peers:", err)
return nil, err
}
return &distanceChecker{
local: c.id,
otherPeers: trustedPeers,
cache: make(map[peer.ID]distance, len(trustedPeers)+1),
}, nil
}
// StateSync performs maintenance tasks on the global state that require
// looping through all the items. It is triggered automatically on
// StateSyncInterval. Currently it:
// * Sends unpin for expired items for which this peer is "closest"
// (skipped for follower peers)
func (c *Cluster) StateSync(ctx context.Context) error {
_, span := trace.StartSpan(ctx, "cluster/StateSync")
defer span.End()
logger.Debug("StateSync")
ctx = trace.NewContext(c.ctx, span)
if c.config.FollowerMode {
return nil
}
cState, err := c.consensus.State(ctx)
if err != nil {
return err
}
timeNow := time.Now()
// Only trigger pin operations if we are the closest with respect to
// other trusted peers. We cannot know if our peer ID is trusted by
// other peers in the Cluster. This assumes yes. Setting FollowerMode
// is a way to assume the opposite and skip this completely.
distance, err := c.distances(ctx, "")
if err != nil {
return err // could not list peers
}
clusterPins := make(chan api.Pin, 1024)
go func() {
err = cState.List(ctx, clusterPins)
if err != nil {
logger.Error(err)
}
}()
// Unpin expired items when we are the closest peer to them.
for p := range clusterPins {
if p.ExpiredAt(timeNow) && distance.isClosest(p.Cid) {
logger.Infof("Unpinning %s: pin expired at %s", p.Cid, p.ExpireAt)
if _, err := c.Unpin(ctx, p.Cid); err != nil {
logger.Error(err)
}
}
}
return nil
}
// StatusAll returns the GlobalPinInfo for all tracked Cids in all peers on
// the out channel. This is done by broacasting a StatusAll to all peers. If
// an error happens, it is returned. This method blocks until it finishes. The
// operation can be aborted by canceling the context.
func (c *Cluster) StatusAll(ctx context.Context, filter api.TrackerStatus, out chan<- api.GlobalPinInfo) error {
_, span := trace.StartSpan(ctx, "cluster/StatusAll")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
in := make(chan api.TrackerStatus, 1)
in <- filter
close(in)
return c.globalPinInfoStream(ctx, "PinTracker", "StatusAll", in, out)
}
// StatusAllLocal returns the PinInfo for all the tracked Cids in this peer on
// the out channel. It blocks until finished.
func (c *Cluster) StatusAllLocal(ctx context.Context, filter api.TrackerStatus, out chan<- api.PinInfo) error {
_, span := trace.StartSpan(ctx, "cluster/StatusAllLocal")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.tracker.StatusAll(ctx, filter, out)
}
// Status returns the GlobalPinInfo for a given Cid as fetched from all
// current peers. If an error happens, the GlobalPinInfo should contain
// as much information as could be fetched from the other peers.
func (c *Cluster) Status(ctx context.Context, h api.Cid) (api.GlobalPinInfo, error) {
_, span := trace.StartSpan(ctx, "cluster/Status")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.globalPinInfoCid(ctx, "PinTracker", "Status", h)
}
// StatusLocal returns this peer's PinInfo for a given Cid.
func (c *Cluster) StatusLocal(ctx context.Context, h api.Cid) api.PinInfo {
_, span := trace.StartSpan(ctx, "cluster/StatusLocal")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.tracker.Status(ctx, h)
}
// used for RecoverLocal and SyncLocal.
func (c *Cluster) localPinInfoOp(
ctx context.Context,
h api.Cid,
f func(context.Context, api.Cid) (api.PinInfo, error),
) (pInfo api.PinInfo, err error) {
ctx, span := trace.StartSpan(ctx, "cluster/localPinInfoOp")
defer span.End()
cids, err := c.cidsFromMetaPin(ctx, h)
if err != nil {
return api.PinInfo{}, err
}
for _, ci := range cids {
pInfo, err = f(ctx, ci)
if err != nil {
logger.Error("tracker.SyncCid() returned with error: ", err)
logger.Error("Is the ipfs daemon running?")
break
}
}
// return the last pInfo/err, should be the root Cid if everything ok
return pInfo, err
}
// RecoverAll triggers a RecoverAllLocal operation on all peers and returns
// GlobalPinInfo objets for all recovered items. This method blocks until
// finished. Operation can be aborted by canceling the context.
func (c *Cluster) RecoverAll(ctx context.Context, out chan<- api.GlobalPinInfo) error {
_, span := trace.StartSpan(ctx, "cluster/RecoverAll")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.globalPinInfoStream(ctx, "Cluster", "RecoverAllLocal", nil, out)
}
// RecoverAllLocal triggers a RecoverLocal operation for all Cids tracked
// by this peer.
//
// Recover operations ask IPFS to pin or unpin items in error state. Recover
// is faster than calling Pin on the same CID as it avoids committing an
// identical pin to the consensus layer.
//
// It returns the list of pins that were re-queued for pinning on the out
// channel. It blocks until done.
//
// RecoverAllLocal is called automatically every PinRecoverInterval.
func (c *Cluster) RecoverAllLocal(ctx context.Context, out chan<- api.PinInfo) error {
_, span := trace.StartSpan(ctx, "cluster/RecoverAllLocal")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.tracker.RecoverAll(ctx, out)
}
// Recover triggers a recover operation for a given Cid in all
// cluster peers.
//
// Recover operations ask IPFS to pin or unpin items in error state. Recover
// is faster than calling Pin on the same CID as it avoids committing an
// identical pin to the consensus layer.
func (c *Cluster) Recover(ctx context.Context, h api.Cid) (api.GlobalPinInfo, error) {
_, span := trace.StartSpan(ctx, "cluster/Recover")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.globalPinInfoCid(ctx, "PinTracker", "Recover", h)
}
// RecoverLocal triggers a recover operation for a given Cid in this peer only.
// It returns the updated PinInfo, after recovery.
//
// Recover operations ask IPFS to pin or unpin items in error state. Recover
// is faster than calling Pin on the same CID as it avoids committing an
// identical pin to the consensus layer.
func (c *Cluster) RecoverLocal(ctx context.Context, h api.Cid) (api.PinInfo, error) {
_, span := trace.StartSpan(ctx, "cluster/RecoverLocal")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
return c.localPinInfoOp(ctx, h, c.tracker.Recover)
}
// Pins sends pins on the given out channel as it iterates the full
// pinset (current global state). This is the source of truth as to which pins
// are managed and their allocation, but does not indicate if the item is
// successfully pinned. For that, use the Status*() methods.
//
// The operation can be aborted by canceling the context. This methods blocks
// until the operation has completed.
func (c *Cluster) Pins(ctx context.Context, out chan<- api.Pin) error {
_, span := trace.StartSpan(ctx, "cluster/Pins")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
cState, err := c.consensus.State(ctx)
if err != nil {
logger.Error(err)
return err
}
return cState.List(ctx, out)
}
// pinsSlice returns the list of Cids managed by Cluster and which are part
// of the current global state. This is the source of truth as to which
// pins are managed and their allocation, but does not indicate if
// the item is successfully pinned. For that, use StatusAll().
//
// It is recommended to use PinsChannel(), as this method is equivalent to
// loading the full pinset in memory!
func (c *Cluster) pinsSlice(ctx context.Context) ([]api.Pin, error) {
out := make(chan api.Pin, 1024)
var err error
go func() {
err = c.Pins(ctx, out)
}()
var pins []api.Pin
for pin := range out {
pins = append(pins, pin)
}
return pins, err
}
// PinGet returns information for a single Cid managed by Cluster.
// The information is obtained from the current global state. The
// returned api.Pin provides information about the allocations
// assigned for the requested Cid, but does not indicate if
// the item is successfully pinned. For that, use Status(). PinGet
// returns an error if the given Cid is not part of the global state.
func (c *Cluster) PinGet(ctx context.Context, h api.Cid) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/PinGet")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
st, err := c.consensus.State(ctx)
if err != nil {
return api.Pin{}, err
}
pin, err := st.Get(ctx, h)
if err != nil {
return api.Pin{}, err
}
return pin, nil
}
// Pin makes the cluster Pin a Cid. This implies adding the Cid
// to the IPFS Cluster peers shared-state. Depending on the cluster
// pinning strategy, the PinTracker may then request the IPFS daemon
// to pin the Cid.
//
// Pin returns the Pin as stored in the global state (with the given
// allocations and an error if the operation could not be persisted. Pin does
// not reflect the success or failure of underlying IPFS daemon pinning
// operations which happen in async fashion.
//
// If the options UserAllocations are non-empty then these peers are pinned
// with priority over other peers in the cluster. If the max repl factor is
// less than the size of the specified peerset then peers are chosen from this
// set in allocation order. If the minimum repl factor is greater than the
// size of this set then the remaining peers are allocated in order from the
// rest of the cluster. Priority allocations are best effort. If any priority
// peers are unavailable then Pin will simply allocate from the rest of the
// cluster.
//
// If the Update option is set, the pin options (including allocations) will
// be copied from an existing one. This is equivalent to running PinUpdate.
func (c *Cluster) Pin(ctx context.Context, h api.Cid, opts api.PinOptions) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/Pin")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
pin := api.PinWithOpts(h, opts)
result, _, err := c.pin(ctx, pin, []peer.ID{})
return result, err
}
// sets the default replication factor in a pin when it's set to 0
func (c *Cluster) setupReplicationFactor(pin api.Pin) (api.Pin, error) {
rplMin := pin.ReplicationFactorMin
rplMax := pin.ReplicationFactorMax
if rplMin == 0 {
rplMin = c.config.ReplicationFactorMin
pin.ReplicationFactorMin = rplMin
}
if rplMax == 0 {
rplMax = c.config.ReplicationFactorMax
pin.ReplicationFactorMax = rplMax
}
// When pinning everywhere, remove all allocations.
// Allocations may have been preset by the adder
// for the cases when the replication factor is > -1.
// Fixes part of #1319: allocations when adding
// are kept.
if pin.IsPinEverywhere() {
pin.Allocations = nil
}
return pin, isReplicationFactorValid(rplMin, rplMax)
}
// basic checks on the pin type to check it's well-formed.
func checkPinType(pin api.Pin) error {
switch pin.Type {
case api.DataType:
if pin.Reference != nil {
return errors.New("data pins should not reference other pins")
}
case api.ShardType:
if pin.MaxDepth != 1 {
return errors.New("must pin shards go depth 1")
}
// FIXME: indirect shard pins could have max-depth 2
// FIXME: repinning a shard type will overwrite replication
// factor from previous:
// if existing.ReplicationFactorMin != rplMin ||
// existing.ReplicationFactorMax != rplMax {
// return errors.New("shard update with wrong repl factors")
//}
case api.ClusterDAGType:
if pin.MaxDepth != 0 {
return errors.New("must pin roots directly")
}
if pin.Reference == nil {
return errors.New("clusterDAG pins should reference a Meta pin")
}
case api.MetaType:
if len(pin.Allocations) != 0 {
return errors.New("meta pin should not specify allocations")
}
if pin.Reference == nil {
return errors.New("metaPins should reference a ClusterDAG")
}
default:
return errors.New("unrecognized pin type")
}
return nil
}
// setupPin ensures that the Pin object is fit for pinning. We check
// and set the replication factors and ensure that the pinType matches the
// metadata consistently.
func (c *Cluster) setupPin(ctx context.Context, pin, existing api.Pin) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/setupPin")
defer span.End()
var err error
pin, err = c.setupReplicationFactor(pin)
if err != nil {
return pin, err
}
if !pin.ExpireAt.IsZero() && pin.ExpireAt.Before(time.Now()) {
return pin, errors.New("pin.ExpireAt set before current time")
}
if !existing.Defined() {
return pin, nil
}
// If an pin CID is already pin, we do a couple more checks
if existing.Type != pin.Type {
msg := "cannot repin CID with different tracking method, "
msg += "clear state with pin rm to proceed. "
msg += "New: %s. Was: %s"
return pin, fmt.Errorf(msg, pin.Type, existing.Type)
}
if existing.Mode == api.PinModeRecursive && pin.Mode != api.PinModeRecursive {
msg := "cannot repin a CID which is already pinned in "
msg += "recursive mode (new pin is pinned as %s). Unpin it first."
return pin, fmt.Errorf(msg, pin.Mode)
}
return pin, checkPinType(pin)
}
// pin performs the actual pinning and supports a blacklist to be able to
// evacuate a node and returns the pin object that it tried to pin, whether
// the pin was submitted to the consensus layer or skipped (due to error or to
// the fact that it was already valid) and error.
//
// This is the method called by the Cluster.Pin RPC endpoint.
func (c *Cluster) pin(
ctx context.Context,
pin api.Pin,
blacklist []peer.ID,
) (api.Pin, bool, error) {
ctx, span := trace.StartSpan(ctx, "cluster/pin")
defer span.End()
if c.config.FollowerMode {
return api.Pin{}, false, errFollowerMode
}
if !pin.Cid.Defined() {
return pin, false, errors.New("bad pin object")
}
// Handle pin updates when the option is set
if update := pin.PinUpdate; update.Defined() && !update.Equals(pin.Cid) {
pin, err := c.PinUpdate(ctx, update, pin.Cid, pin.PinOptions)
return pin, true, err
}
existing, err := c.PinGet(ctx, pin.Cid)
if err != nil && err != state.ErrNotFound {
return pin, false, err
}
pin, err = c.setupPin(ctx, pin, existing)
if err != nil {
return pin, false, err
}
// Set the Pin timestamp to now(). This is not an user-controllable
// "option".
pin.Timestamp = time.Now()
if pin.Type == api.MetaType {
return pin, true, c.consensus.LogPin(ctx, pin)
}
// We did not change ANY options and the pin exists so we just repin
// what there is without doing new allocations. While this submits
// pins to the consensus layer even if they are, this should trigger the
// pin tracker and allows users to get re-pin operations by re-adding
// without having to use recover, which is naturally expected.
//
// blacklist is set on repinFromPeer having any blacklisted peers
// means we are repinning and need to trigger allocate(), therefore we
// can't overwrite the incoming pin (which has Allocations set to
// nil).
if existing.Defined() &&
pin.PinOptions.Equals(existing.PinOptions) &&
len(blacklist) == 0 {
pin = existing
}
// Usually allocations are unset when pinning normally, however, the
// allocations may have been preset by the adder in which case they
// need to be respected. Whenever allocations are set. We don't
// re-allocate. repinFromPeer() unsets allocations for this reason.
// allocate() will check which peers are currently allocated
// and try to respect them.
if len(pin.Allocations) == 0 {
// If replication factor is -1, this will return empty
// allocations.
allocs, err := c.allocate(
ctx,
pin.Cid,
existing,
pin.ReplicationFactorMin,
pin.ReplicationFactorMax,
blacklist,
pin.UserAllocations,
)
if err != nil {
return pin, false, err
}
pin.Allocations = allocs
}
// If this is true, replication factor should be -1.
if len(pin.Allocations) == 0 {
logger.Infof("pinning %s everywhere:", pin.Cid)
} else {
logger.Infof("pinning %s on %s:", pin.Cid, pin.Allocations)
}
return pin, true, c.consensus.LogPin(ctx, pin)
}
// Unpin removes a previously pinned Cid from Cluster. It returns
// the global state Pin object as it was stored before removal, or
// an error if it was not possible to update the global state.
//
// Unpin does not reflect the success or failure of underlying IPFS daemon
// unpinning operations, which happen in async fashion.
func (c *Cluster) Unpin(ctx context.Context, h api.Cid) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/Unpin")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
if c.config.FollowerMode {
return api.Pin{}, errFollowerMode
}
logger.Info("IPFS cluster unpinning:", h)
pin, err := c.PinGet(ctx, h)
if err != nil {
return api.Pin{}, err
}
switch pin.Type {
case api.DataType:
return pin, c.consensus.LogUnpin(ctx, pin)
case api.ShardType:
err := "cannot unpin a shard directly. Unpin content root CID instead"
return pin, errors.New(err)
case api.MetaType:
// Unpin cluster dag and referenced shards
err := c.unpinClusterDag(pin)
if err != nil {
return pin, err
}
return pin, c.consensus.LogUnpin(ctx, pin)
case api.ClusterDAGType:
err := "cannot unpin a Cluster DAG directly. Unpin content root CID instead"
return pin, errors.New(err)
default:
return pin, errors.New("unrecognized pin type")
}
}
// unpinClusterDag unpins the clusterDAG metadata node and the shard metadata
// nodes that it references. It handles the case where multiple parents
// reference the same metadata node, only unpinning those nodes without
// existing references
func (c *Cluster) unpinClusterDag(metaPin api.Pin) error {
ctx, span := trace.StartSpan(c.ctx, "cluster/unpinClusterDag")
defer span.End()
cids, err := c.cidsFromMetaPin(ctx, metaPin.Cid)
if err != nil {
return err
}
// TODO: FIXME: potentially unpinning shards which are referenced
// by other clusterDAGs.
for _, ci := range cids {
err = c.consensus.LogUnpin(ctx, api.PinCid(ci))
if err != nil {
return err
}
}
return nil
}
// PinUpdate pins a new CID based on an existing cluster Pin. The allocations
// and most pin options (replication factors) are copied from the existing
// Pin. The options object can be used to set the Name for the new pin and
// might support additional options in the future.
//
// The from pin is NOT unpinned upon completion. The new pin might take
// advantage of efficient pin/update operation on IPFS-side (if the
// IPFSConnector supports it - the default one does). This may offer
// significant speed when pinning items which are similar to previously pinned
// content.
func (c *Cluster) PinUpdate(ctx context.Context, from api.Cid, to api.Cid, opts api.PinOptions) (api.Pin, error) {
existing, err := c.PinGet(ctx, from)
if err != nil { // including when the existing pin is not found
return api.Pin{}, err
}
// Hector: I am not sure whether it has any point to update something
// like a MetaType.
if existing.Type != api.DataType {
return api.Pin{}, errors.New("this pin type cannot be updated")
}
existing.Cid = to
existing.PinUpdate = from
existing.Timestamp = time.Now()
if opts.Name != "" {
existing.Name = opts.Name
}
if !opts.ExpireAt.IsZero() && opts.ExpireAt.After(time.Now()) {
existing.ExpireAt = opts.ExpireAt
}
return existing, c.consensus.LogPin(ctx, existing)
}
// PinPath pins an CID resolved from its IPFS Path. It returns the resolved
// Pin object.
func (c *Cluster) PinPath(ctx context.Context, path string, opts api.PinOptions) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/PinPath")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
ci, err := c.ipfs.Resolve(ctx, path)
if err != nil {
return api.Pin{}, err
}
return c.Pin(ctx, ci, opts)
}
// UnpinPath unpins a CID resolved from its IPFS Path. If returns the
// previously pinned Pin object.
func (c *Cluster) UnpinPath(ctx context.Context, path string) (api.Pin, error) {
_, span := trace.StartSpan(ctx, "cluster/UnpinPath")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
ci, err := c.ipfs.Resolve(ctx, path)
if err != nil {
return api.Pin{}, err
}
return c.Unpin(ctx, ci)
}
// AddFile adds a file to the ipfs daemons of the cluster. The ipfs importer
// pipeline is used to DAGify the file. Depending on input parameters this
// DAG can be added locally to the calling cluster peer's ipfs repo, or
// sharded across the entire cluster.
func (c *Cluster) AddFile(ctx context.Context, reader *multipart.Reader, params api.AddParams) (api.Cid, error) {
// TODO: add context param and tracing
var dags adder.ClusterDAGService
if params.Shard {
dags = sharding.New(ctx, c.rpcClient, params, nil)
} else {
dags = single.New(ctx, c.rpcClient, params, params.Local)
}
add := adder.New(dags, params, nil)
return add.FromMultipart(ctx, reader)
}
// Version returns the current IPFS Cluster version.
func (c *Cluster) Version() string {
return version.Version.String()
}
// Peers returns the IDs of the members of this Cluster on the out channel.
// This method blocks until it has finished.
func (c *Cluster) Peers(ctx context.Context, out chan<- api.ID) {
_, span := trace.StartSpan(ctx, "cluster/Peers")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
peers, err := c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
logger.Error("an empty list of peers will be returned")
close(out)
return
}
c.peersWithFilter(ctx, peers, out)
}
// requests IDs from a given number of peers.
func (c *Cluster) peersWithFilter(ctx context.Context, peers []peer.ID, out chan<- api.ID) {
defer close(out)
// We should be done relatively quickly with this call. Otherwise
// report errors.
timeout := 15 * time.Second
ctxCall, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
in := make(chan struct{})
close(in)
idsOut := make(chan api.ID, len(peers))
errCh := make(chan []error, 1)
go func() {
defer close(errCh)
errCh <- c.rpcClient.MultiStream(
ctxCall,
peers,
"Cluster",
"IDStream",
in,
idsOut,
)
}()
// Unfortunately, we need to use idsOut as intermediary channel
// because it is closed when MultiStream ends and we cannot keep
// adding things on it (the errors below).
for id := range idsOut {
select {
case <-ctx.Done():
logger.Errorf("Peers call aborted: %s", ctx.Err())
return
case out <- id:
}
}
// ErrCh will always be closed on context cancellation too.
errs := <-errCh
for i, err := range errs {
if err == nil {
continue
}
if rpc.IsAuthorizationError(err) {
continue
}
select {
case <-ctx.Done():
logger.Errorf("Peers call aborted: %s", ctx.Err())
case out <- api.ID{
ID: peers[i],
Error: err.Error(),
}:
}
}
}
// getTrustedPeers gives listed of trusted peers except the current peer and
// the excluded peer if provided.
func (c *Cluster) getTrustedPeers(ctx context.Context, exclude peer.ID) ([]peer.ID, error) {
peers, err := c.consensus.Peers(ctx)
if err != nil {
return nil, err
}
trustedPeers := make([]peer.ID, 0, len(peers))
for _, p := range peers {
if p == c.id || p == exclude || !c.consensus.IsTrustedPeer(ctx, p) {
continue
}
trustedPeers = append(trustedPeers, p)
}
return trustedPeers, nil
}
func (c *Cluster) setTrackerStatus(gpin *api.GlobalPinInfo, h api.Cid, peers []peer.ID, status api.TrackerStatus, pin api.Pin, t time.Time) {
for _, p := range peers {
pv := pingValueFromMetric(c.monitor.LatestForPeer(c.ctx, pingMetricName, p))
gpin.Add(api.PinInfo{
Cid: h,
Name: pin.Name,
Allocations: pin.Allocations,
Origins: pin.Origins,
Created: pin.Timestamp,
Metadata: pin.Metadata,
Peer: p,
PinInfoShort: api.PinInfoShort{
PeerName: pv.Peername,
IPFS: pv.IPFSID,
IPFSAddresses: pv.IPFSAddresses,
Status: status,
TS: t,
},
})
}
}
func (c *Cluster) globalPinInfoCid(ctx context.Context, comp, method string, h api.Cid) (api.GlobalPinInfo, error) {
ctx, span := trace.StartSpan(ctx, "cluster/globalPinInfoCid")
defer span.End()
// The object we will return
gpin := api.GlobalPinInfo{}
// allocated peers, we will contact them through rpc
var dests []peer.ID
// un-allocated peers, we will set remote status
var remote []peer.ID
timeNow := time.Now()
// If pin is not part of the pinset, mark it unpinned
pin, err := c.PinGet(ctx, h)
if err != nil && err != state.ErrNotFound {
logger.Error(err)
return api.GlobalPinInfo{}, err
}
// When NotFound return directly with an unpinned
// status.
if err == state.ErrNotFound {
var members []peer.ID
if c.config.FollowerMode {
members = []peer.ID{c.host.ID()}
} else {
members, err = c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
return api.GlobalPinInfo{}, err
}
}
c.setTrackerStatus(
&gpin,
h,
members,
api.TrackerStatusUnpinned,
api.PinCid(h),
timeNow,
)
return gpin, nil
}
// The pin exists.
gpin.Cid = h
gpin.Name = pin.Name
// Make the list of peers that will receive the request.
if c.config.FollowerMode {
// during follower mode return only local status.
dests = []peer.ID{c.host.ID()}
remote = []peer.ID{}
} else {
members, err := c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
return api.GlobalPinInfo{}, err
}
if !pin.IsPinEverywhere() {
dests = pin.Allocations
remote = peersSubtract(members, dests)
} else {
dests = members
remote = []peer.ID{}
}
}
// set status remote on un-allocated peers
c.setTrackerStatus(&gpin, h, remote, api.TrackerStatusRemote, pin, timeNow)
lenDests := len(dests)
replies := make([]api.PinInfo, lenDests)
// a globalPinInfo type of request should be relatively fast. We
// cannot block response indefinitely due to an unresponsive node.
timeout := 15 * time.Second
ctxs, cancels := rpcutil.CtxsWithTimeout(ctx, lenDests, timeout)
defer rpcutil.MultiCancel(cancels)
errs := c.rpcClient.MultiCall(
ctxs,
dests,
comp,
method,
h,
rpcutil.CopyPinInfoToIfaces(replies),
)
for i, r := range replies {
e := errs[i]
// No error. Parse and continue
if e == nil {
gpin.Add(r)
continue
}
if rpc.IsAuthorizationError(e) {
logger.Debug("rpc auth error:", e)
continue
}
// Deal with error cases (err != nil): wrap errors in PinInfo
logger.Errorf("%s: error in broadcast response from %s: %s ", c.id, dests[i], e)
pv := pingValueFromMetric(c.monitor.LatestForPeer(ctx, pingMetricName, dests[i]))
gpin.Add(api.PinInfo{
Cid: h,
Name: pin.Name,
Peer: dests[i],
Allocations: pin.Allocations,
Origins: pin.Origins,
Created: pin.Timestamp,
Metadata: pin.Metadata,
PinInfoShort: api.PinInfoShort{
PeerName: pv.Peername,
IPFS: pv.IPFSID,
IPFSAddresses: pv.IPFSAddresses,
Status: api.TrackerStatusClusterError,
TS: timeNow,
Error: e.Error(),
},
})
}
return gpin, nil
}
func (c *Cluster) globalPinInfoStream(ctx context.Context, comp, method string, inChan interface{}, out chan<- api.GlobalPinInfo) error {
defer close(out)
ctx, span := trace.StartSpan(ctx, "cluster/globalPinInfoStream")
defer span.End()
if inChan == nil {
emptyChan := make(chan struct{})
close(emptyChan)
inChan = emptyChan
}
fullMap := make(map[api.Cid]api.GlobalPinInfo)
var members []peer.ID
var err error
if c.config.FollowerMode {
members = []peer.ID{c.host.ID()}
} else {
members, err = c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
return err
}
}
// We don't have a good timeout proposal for this. Depending on the
// size of the state and the peformance of IPFS and the network, this
// may take moderately long.
// If we did, this is the place to put it.
ctx, cancel := context.WithCancel(ctx)
defer cancel()
msOut := make(chan api.PinInfo)
errsCh := make(chan []error, 1)
go func() {
defer close(errsCh)
errsCh <- c.rpcClient.MultiStream(
ctx,
members,
comp,
method,
inChan,
msOut,
)
}()
setPinInfo := func(p api.PinInfo) {
if !p.Defined() {
return
}
info, ok := fullMap[p.Cid]
if !ok {
info = api.GlobalPinInfo{}
}
info.Add(p)
// Set the new/updated info
fullMap[p.Cid] = info
}
// make the big collection.
for pin := range msOut {
setPinInfo(pin)
}
// This WAITs until MultiStream is DONE.
erroredPeers := make(map[peer.ID]string)
errs, ok := <-errsCh
if ok {
for i, err := range errs {
if err == nil {
continue
}
if rpc.IsAuthorizationError(err) {
logger.Debug("rpc auth error", err)
continue
}
logger.Errorf("%s: error in broadcast response from %s: %s ", c.id, members[i], err)
erroredPeers[members[i]] = err.Error()
}
}
// Merge any errors
for p, msg := range erroredPeers {
pv := pingValueFromMetric(c.monitor.LatestForPeer(ctx, pingMetricName, p))
for c := range fullMap {
setPinInfo(api.PinInfo{
Cid: c,
Name: "",
Peer: p,
Allocations: nil,
Origins: nil,
// Created: // leave unitialized
Metadata: nil,
PinInfoShort: api.PinInfoShort{
PeerName: pv.Peername,
IPFS: pv.IPFSID,
IPFSAddresses: pv.IPFSAddresses,
Status: api.TrackerStatusClusterError,
TS: time.Now(),
Error: msg,
},
})
}
}
for _, v := range fullMap {
select {
case <-ctx.Done():
err := fmt.Errorf("%s.%s aborted: %w", comp, method, ctx.Err())
logger.Error(err)
return err
case out <- v:
}
}
return nil
}
func (c *Cluster) getIDForPeer(ctx context.Context, pid peer.ID) (*api.ID, error) {
ctx, span := trace.StartSpan(ctx, "cluster/getIDForPeer")
defer span.End()
var id api.ID
err := c.rpcClient.CallContext(
ctx,
pid,
"Cluster",
"ID",
struct{}{},
&id,
)
if err != nil {
logger.Error(err)
id.ID = pid
id.Error = err.Error()
}
return &id, err
}
// cidsFromMetaPin expands a meta-pin and returns a list of Cids that
// Cluster handles for it: the ShardPins, the ClusterDAG and the MetaPin, in
// that order (the MetaPin is the last element).
// It returns a slice with only the given Cid if it's not a known Cid or not a
// MetaPin.
func (c *Cluster) cidsFromMetaPin(ctx context.Context, h api.Cid) ([]api.Cid, error) {
ctx, span := trace.StartSpan(ctx, "cluster/cidsFromMetaPin")
defer span.End()
cState, err := c.consensus.State(ctx)
if err != nil {
return nil, err
}
list := []api.Cid{h}
pin, err := cState.Get(ctx, h)
if err != nil {
return nil, err
}
if pin.Type != api.MetaType {
return list, nil
}
if pin.Reference == nil {
return nil, errors.New("metaPin.Reference is unset")
}
list = append([]api.Cid{*pin.Reference}, list...)
clusterDagPin, err := c.PinGet(ctx, *pin.Reference)
if err != nil {
return list, fmt.Errorf("could not get clusterDAG pin from state. Malformed pin?: %s", err)
}
clusterDagBlock, err := c.ipfs.BlockGet(ctx, clusterDagPin.Cid)
if err != nil {
return list, fmt.Errorf("error reading clusterDAG block from ipfs: %s", err)
}
clusterDagNode, err := sharding.CborDataToNode(clusterDagBlock, "cbor")
if err != nil {
return list, fmt.Errorf("error parsing clusterDAG block: %s", err)
}
for _, l := range clusterDagNode.Links() {
list = append([]api.Cid{api.NewCid(l.Cid)}, list...)
}
return list, nil
}
// // diffPeers returns the peerIDs added and removed from peers2 in relation to
// // peers1
// func diffPeers(peers1, peers2 []peer.ID) (added, removed []peer.ID) {
// m1 := make(map[peer.ID]struct{})
// m2 := make(map[peer.ID]struct{})
// added = make([]peer.ID, 0)
// removed = make([]peer.ID, 0)
// if peers1 == nil && peers2 == nil {
// return
// }
// if peers1 == nil {
// added = peers2
// return
// }
// if peers2 == nil {
// removed = peers1
// return
// }
// for _, p := range peers1 {
// m1[p] = struct{}{}
// }
// for _, p := range peers2 {
// m2[p] = struct{}{}
// }
// for k := range m1 {
// _, ok := m2[k]
// if !ok {
// removed = append(removed, k)
// }
// }
// for k := range m2 {
// _, ok := m1[k]
// if !ok {
// added = append(added, k)
// }
// }
// return
// }
// RepoGC performs garbage collection sweep on all peers' IPFS repo.
func (c *Cluster) RepoGC(ctx context.Context) (api.GlobalRepoGC, error) {
_, span := trace.StartSpan(ctx, "cluster/RepoGC")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
members, err := c.consensus.Peers(ctx)
if err != nil {
logger.Error(err)
return api.GlobalRepoGC{}, err
}
// to club `RepoGCLocal` responses of all peers into one
globalRepoGC := api.GlobalRepoGC{PeerMap: make(map[string]api.RepoGC)}
for _, member := range members {
var repoGC api.RepoGC
err = c.rpcClient.CallContext(
ctx,
member,
"Cluster",
"RepoGCLocal",
struct{}{},
&repoGC,
)
if err == nil {
globalRepoGC.PeerMap[peer.Encode(member)] = repoGC
continue
}
if rpc.IsAuthorizationError(err) {
logger.Debug("rpc auth error:", err)
continue
}
logger.Errorf("%s: error in broadcast response from %s: %s ", c.id, member, err)
pv := pingValueFromMetric(c.monitor.LatestForPeer(c.ctx, pingMetricName, member))
globalRepoGC.PeerMap[peer.Encode(member)] = api.RepoGC{
Peer: member,
Peername: pv.Peername,
Keys: []api.IPFSRepoGC{},
Error: err.Error(),
}
}
return globalRepoGC, nil
}
// RepoGCLocal performs garbage collection only on the local IPFS deamon.
func (c *Cluster) RepoGCLocal(ctx context.Context) (api.RepoGC, error) {
_, span := trace.StartSpan(ctx, "cluster/RepoGCLocal")
defer span.End()
ctx = trace.NewContext(c.ctx, span)
resp, err := c.ipfs.RepoGC(ctx)
if err != nil {
return api.RepoGC{}, err
}
resp.Peer = c.id
resp.Peername = c.config.Peername
return resp, nil
}