Noticed because of a warning during an rpm build:
*** WARNING: ./usr/src/debug/nix-2.18.1-1.fc40.x86_64/src/nix-copy-closure/nix-copy-closure.cc is executable but has no shebang, removing executable bit
*** WARNING: ./usr/src/debug/nix-2.18.1-1.fc40.x86_64/src/nix-channel/nix-channel.cc is executable but has no shebang, removing executable bit
Avoid duplicated code, and also avoid "on the fly" path construction
(which makes it harder to keep track of which paths we use).
The factored out code doesn't create the Nix state dir anymore, but this
is fine because other in nix-env and nix-channel does:
- nix-channel: Line 158 in this commit
- nix-env: Line 1407 in this commit
Add support to --list-generations
as another way to say
nix-env --profile /nix/var/nix/profiles/per-user/$USER/channels --list-generations
the way we did for nix-channel --rollback [generation id]
XDG Base Directory is a standard for locations for storing various
files. Nix has a few files which seem to fit in the standard, but
currently use a custom location directly in the user's ~, polluting
it:
- ~/.nix-profile
- ~/.nix-defexpr
- ~/.nix-channels
This commit adds a config option (use-xdg-base-directories) to follow
the XDG spec and instead use the following locations:
- $XDG_STATE_HOME/nix/profile
- $XDG_STATE_HOME/nix/defexpr
- $XDG_STATE_HOME/nix/channels
If $XDG_STATE_HOME is not set, it is assumed to be ~/.local/state.
Co-authored-by: Théophane Hufschmitt <7226587+thufschmitt@users.noreply.github.com>
Co-authored-by: Tim Fenney <kodekata@gmail.com>
Co-authored-by: pasqui23 <pasqui23@users.noreply.github.com>
Co-authored-by: Artturin <Artturin@artturin.com>
Co-authored-by: John Ericson <Ericson2314@Yahoo.com>
Rather than using `/nix/var/nix/{profiles,gcroots}/per-user/`, put the user
profiles and gcroots under `$XDG_DATA_DIR/nix/{profiles,gcroots}`.
This means that the daemon no longer needs to manage these paths itself
(they are fully handled client-side). In particular, it doesn’t have to
`chown` them anymore (removing one need for root).
This does change the layout of the gc-roots created by nix-env, and is
likely to break some stuff, so I’m not sure how to properly handle that.
This is technically a breaking change, since attempting to set plugin
files after the first non-flag argument will now throw an error. This
is acceptable given the relative lack of stability in a plugin
interface and the need to tie the knot somewhere once plugins can
actually define new subcommands.
`nix flake info` calls the github 'commits' API, which requires
authorization when the repository is private. Currently this request
fails with a 404.
This commit adds an authorization header when calling the 'commits' API.
It also changes the way that the 'tarball' API authenticates, moving the
user's token from a query parameter into the Authorization header.
The query parameter method is recently deprecated and will be disallowed
in November 2020. Using them today triggers a warning email.
This provides a pluggable mechanism for defining new fetchers. It adds
a builtin function 'fetchTree' that generalizes existing fetchers like
'fetchGit', 'fetchMercurial' and 'fetchTarball'. 'fetchTree' takes a
set of attributes, e.g.
fetchTree {
type = "git";
url = "https://example.org/repo.git";
ref = "some-branch";
rev = "abcdef...";
}
The existing fetchers are just wrappers around this. Note that the
input attributes to fetchTree are the same as flake input
specifications and flake lock file entries.
All fetchers share a common cache stored in
~/.cache/nix/fetcher-cache-v1.sqlite. This replaces the ad hoc caching
mechanisms in fetchGit and download.cc (e.g. ~/.cache/nix/{tarballs,git-revs*}).
This also adds support for Git worktrees (c169ea5904).
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
‘geteuid’ gives us the user that the command is being run as,
including in setuid modes. By using geteuid to determind id, we can
avoid the ‘sudo -i’ hack when upgrading Nix. So now, upgrading Nix on
macOS is as simple as:
$ sudo nix-channel --update
$ sudo nix-env -u
$ sudo launchctl stop org.nixos.nix-daemon
$ sudo launchctl start org.nixos.nix-daemon
or
$ sudo systemctl restart nix-daemon
The existing ordering linked `libutil` before `libstore`, which causes
link failures when building statically. This is due to `libstore` using
functions from `libutil`, and the fact that symbol resolution works
"forward" - i.e. if you pass `-lfoo -lbar -lbaz`, any symbols that
`libbar` uses from `libbaz` will be resolved, but symbols from `libfoo`
will not since it comes first in the command line.
All this to say: this commit reorders the libraries which fixes the link
errors.
The binary cache store can now use HTTP/2 to do lookups. This is much
more efficient than HTTP/1.1 due to multiplexing: we can issue many
requests in parallel over a single TCP connection. Thus it's no longer
necessary to use a bunch of concurrent TCP connections (25 by
default).
For example, downloading 802 .narinfo files from
https://cache.nixos.org/, using a single TCP connection, takes 11.8s
with HTTP/1.1, but only 0.61s with HTTP/2.
This did require a fairly substantial rewrite of the Downloader class
to use the curl multi interface, because otherwise curl wouldn't be
able to do multiplexing for us. As a bonus, we get connection reuse
even with HTTP/1.1. All downloads are now handled by a single worker
thread. Clients call Downloader::enqueueDownload() to tell the worker
thread to start the download, getting a std::future to the result.