We embrace virtual the rest of the way, and get rid of the
`assert(false)` 0-param constructors.
We also list config base classes first, so the constructor order is
always:
1. all the configs
2. all the stores
Each in the same order
Rework the `Store` hierarchy so that there's now one hierarchy for the
store configs and one for the implementations (where each implementation
extends the corresponding config). So a class hierarchy like
```
StoreConfig-------->Store
| |
v v
SubStoreConfig----->SubStore
| |
v v
SubSubStoreConfig-->SubSubStore
```
(with virtual inheritance to prevent DDD).
The advantage of this architecture is that we can now introspect the configuration of a store without having to instantiate the store itself
Add a new `init()` method to the `Store` class that is supposed to
handle all the effectful initialisation needed to set-up the store.
The constructor should remain side-effect free and just initialize the
c++ data structure.
The goal behind that is that we can create “dummy” instances of each
store to query static properties about it (the parameters it accepts for
example)
Directly register the store classes rather than a function to build an
instance of them.
This gives the possibility to introspect static members of the class or
choose different ways of instantiating them.
This allows overriding the priority of substituters, e.g.
$ nix-store --store ~/my-nix/ -r /nix/store/df3m4da96d84ljzxx4mygfshm1p0r2n3-geeqie-1.4 \
--substituters 'http://cache.nixos.org?priority=100 daemon?priority=10'
Fixes#3264.
This flag
* Disables substituters.
* Sets the tarball-ttl to infinity (ensuring e.g. that the flake
registry and any downloaded flakes are considered current).
* Disables retrying downloads and sets the connection timeout to the
minimum. (So it doesn't completely disable downloads at the moment.)
(cherry picked from commit 8ea842260b)
Once we've started writing data to a Sink, we can't restart a download
request, because then we end up writing duplicate data to the
Sink. Therefore we shouldn't handle retries in Downloader but at a
higher level (in particular, in copyStorePath()).
Fixes#2952.
(cherry picked from commit a67cf5a358)
Some servers, such as Artifactory, allow uploading with PUT and BASIC
auth. This allows nix copy to work to upload binaries to those
servers.
Worked on together with @adelbertc
The fact that queryPathInfo() is synchronous meant that we needed a
thread for every concurrent binary cache lookup, even though they end
up being handled by the same download thread. Requiring hundreds of
threads is not a good idea. So now there is an asynchronous version of
queryPathInfo() that takes a callback function to process the
result. Similarly, enqueueDownload() now takes a callback rather than
returning a future.
Thus, a command like
nix path-info --store https://cache.nixos.org/ -r /nix/store/slljrzwmpygy1daay14kjszsr9xix063-nixos-16.09beta231.dccf8c5
that returns 4941 paths now takes 1.87s using only 2 threads (the main
thread and the downloader thread). (This is with a prewarmed
CloudFront.)
The binary cache store can now use HTTP/2 to do lookups. This is much
more efficient than HTTP/1.1 due to multiplexing: we can issue many
requests in parallel over a single TCP connection. Thus it's no longer
necessary to use a bunch of concurrent TCP connections (25 by
default).
For example, downloading 802 .narinfo files from
https://cache.nixos.org/, using a single TCP connection, takes 11.8s
with HTTP/1.1, but only 0.61s with HTTP/2.
This did require a fairly substantial rewrite of the Downloader class
to use the curl multi interface, because otherwise curl wouldn't be
able to do multiplexing for us. As a bonus, we get connection reuse
even with HTTP/1.1. All downloads are now handled by a single worker
thread. Clients call Downloader::enqueueDownload() to tell the worker
thread to start the download, getting a std::future to the result.