builtins.path allows specifying the name of a path (which makes paths
with store-illegal names now addable), allows adding paths with flat
instead of recursive hashes, allows specifying a filter (so is a
generalization of filterSource), and allows specifying an expected
hash (enabling safe path adding in pure mode).
In this mode, the following restrictions apply:
* The builtins currentTime, currentSystem and storePath throw an
error.
* $NIX_PATH and -I are ignored.
* fetchGit and fetchMercurial require a revision hash.
* fetchurl and fetchTarball require a sha256 attribute.
* No file system access is allowed outside of the paths returned by
fetch{Git,Mercurial,url,Tarball}. Thus 'nix build -f ./foo.nix' is
not allowed.
Thus, the evaluation result is completely reproducible from the
command line arguments. E.g.
nix build --pure-eval '(
let
nix = fetchGit { url = https://github.com/NixOS/nixpkgs.git; rev = "9c927de4b179a6dd210dd88d34bda8af4b575680"; };
nixpkgs = fetchGit { url = https://github.com/NixOS/nixpkgs.git; ref = "release-17.09"; rev = "66b4de79e3841530e6d9c6baf98702aa1f7124e4"; };
in (import (nix + "/release.nix") { inherit nix nixpkgs; }).build.x86_64-linux
)'
The goal is to enable completely reproducible and traceable
evaluation. For example, a NixOS configuration could be fully
described by a single Git commit hash. 'nixos-rebuild' would do
something like
nix build --pure-eval '(
(import (fetchGit { url = file:///my-nixos-config; rev = "..."; })).system
')
where the Git repository /my-nixos-config would use further fetchGit
calls or Git externals to fetch Nixpkgs and whatever other
dependencies it has. Either way, the commit hash would uniquely
identify the NixOS configuration and allow it to reproduced.
For example, you can write
src = fetchgit ./.;
and if ./. refers to an unclean working tree, that tree will be copied
to the Nix store. This removes the need for "cleanSource".
The computation of urlHash didn't take the name into account, so
subsequent fetchurl calls with the same URL but a different name would
resolve to the same cached store path.
The "name" attribute defaults to "source", which we should use for all
similar functions (e.g. fetchTarball and in Hydra) to ensure that we
get a consistent store path regardless of how the tree is fetched.
"source" is not necessarily a correct label, but using an empty name
is problematic: you get an ugly store path ending in a dash, and it's
impossible to have a fixed-output derivation that produces that path
because ".drv" is not a valid store name.
Fixes#904.
This check spuriously fails for e.g. git@github.com:NixOS/nixpkgs.git,
and even for ssh://git@github.com/NixOS/nixpkgs.git, and is made
redundant by the checks git itself will do when fetching the repo. We
instead pass a -- before passing the URI to git to avoid injection.
This adds an argument "rev" specififying the Git commit hash. The
existing argument "rev" is renamed to "ref". The default value for
"ref" is "master". When specifying a hash, it's necessary to specify a
ref since we're not cloning the entire repository but only fetching a
specific ref.
Example usage:
builtins.fetchgit {
url = https://github.com/NixOS/nixpkgs.git;
ref = "release-16.03";
rev = "c1c0484041ab6f9c6858c8ade80a8477c9ae4442";
};
Functions like copyClosure() had 3 bool arguments, which creates a
severe risk of mixing up arguments.
Also, implement copyClosure() using copyPaths().
There's no reason to restrict this to Error exceptions. This shouldn't
matter to #1407 since the repl doesn't catch non-Error exceptions
anyway, but you never know...
With catch-all rules, we hide potential errors.
It turns out that a4744254 made one cath-all useless. Flex detected that
is was impossible to reach.
The other is more subtle, as it can only trigger on unfinished escapes
in unfinished strings, which only occurs at EOF.
In particular, this disallows attribute names containing dots or
starting with dots. Hydra already disallowed these. This affects the
following packages in Nixpkgs master:
2048-in-terminal
2bwm
389-ds-base
90secondportraits
lispPackages.3bmd
lispPackages.hu.dwim.asdf
lispPackages.hu.dwim.def
Closes#1342.
Execute a given program with the (optional) given arguments as the
user running the evaluation, parsing stdout as an expression to be
evaluated.
There are many use cases for nix that would benefit from being able to
run arbitrary code during evaluation, including but not limited to:
* Automatic git fetching to get a sha256 from a git revision
* git rev-parse HEAD
* Automatic extraction of information from build specifications from
other tools, particularly language-specific package managers like
cabal or npm
* Secrets decryption (e.g. with nixops)
* Private repository fetching
Ideally, we would add this functionality in a more principled way to
nix, but in the mean time 'builtins.exec' can be used to get these
tasks done.
The primop is only available when the
'allow-unsafe-native-code-during-evaluation' nix option is true. That
flag also enables the 'importNative' primop, which is strictly more
powerful but less convenient (since it requires compiling a plugin
against the running version of nix).
Previously, the Settings class allowed other code to query for string
properties, which led to a proliferation of code all over the place making
up new options without any sort of central registry of valid options. This
commit pulls all those options back into the central Settings class and
removes the public get() methods, to discourage future abuses like that.
Furthermore, because we know the full set of options ahead of time, we
now fail loudly if someone enters an unrecognized option, thus preventing
subtle typos. With some template fun, we could probably also dump the full
set of options (with documentation, defaults, etc.) to the command line,
but I'm not doing that yet here.
Because config.h can #define things like _FILE_OFFSET_BITS=64 and not
every compilation unit includes config.h, we currently compile half of
Nix with _FILE_OFFSET_BITS=64 and other half with _FILE_OFFSET_BITS
unset. This causes major havoc with the Settings class on e.g. 32-bit ARM,
where different compilation units disagree with the struct layout.
E.g.:
diff --git a/src/libstore/globals.cc b/src/libstore/globals.cc
@@ -166,6 +166,8 @@ void Settings::update()
_get(useSubstitutes, "build-use-substitutes");
+ fprintf(stderr, "at Settings::update(): &useSubstitutes = %p\n", &nix::settings.useSubstitutes);
_get(buildUsersGroup, "build-users-group");
diff --git a/src/libstore/remote-store.cc b/src/libstore/remote-store.cc
+++ b/src/libstore/remote-store.cc
@@ -138,6 +138,8 @@ void RemoteStore::initConnection(Connection & conn)
void RemoteStore::setOptions(Connection & conn)
{
+ fprintf(stderr, "at RemoteStore::setOptions(): &useSubstitutes = %p\n", &nix::settings.useSubstitutes);
conn.to << wopSetOptions
Gave me:
at Settings::update(): &useSubstitutes = 0xb6e5c5cb
at RemoteStore::setOptions(): &useSubstitutes = 0xb6e5c5c7
That was not a fun one to debug!
Previously, all derivation attributes had to be coerced into strings
so that they could be passed via the environment. This is lossy
(e.g. lists get flattened, necessitating configureFlags
vs. configureFlagsArray, of which the latter cannot be specified as an
attribute), doesn't support attribute sets at all, and has size
limitations (necessitating hacks like passAsFile).
This patch adds a new mode for passing attributes to builders, namely
encoded as a JSON file ".attrs.json" in the current directory of the
builder. This mode is activated via the special attribute
__structuredAttrs = true;
(The idea is that one day we can set this in stdenv.mkDerivation.)
For example,
stdenv.mkDerivation {
__structuredAttrs = true;
name = "foo";
buildInputs = [ pkgs.hello pkgs.cowsay ];
doCheck = true;
hardening.format = false;
}
results in a ".attrs.json" file containing (sans the indentation):
{
"buildInputs": [],
"builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash",
"configureFlags": [
"--with-foo",
"--with-bar=1 2"
],
"doCheck": true,
"hardening": {
"format": false
},
"name": "foo",
"nativeBuildInputs": [
"/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10",
"/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03"
],
"propagatedBuildInputs": [],
"propagatedNativeBuildInputs": [],
"stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv",
"system": "x86_64-linux"
}
"passAsFile" is ignored in this mode because it's not needed - large
strings are included directly in the JSON representation.
It is up to the builder to do something with the JSON
representation. For example, in bash-based builders, lists/attrsets of
string values could be mapped to bash (associative) arrays.
On some architectures (like x86_64 or i686, but not ARM for example)
overflow during integer division causes a crash due to SIGFPE.
Reproduces on a 64-bit system with:
nix-instantiate --eval -E '(-9223372036854775807 - 1) / -1'
The only way this can happen is when the smallest possible integer is
divided by -1, so just special-case that.
The binary cache store can now use HTTP/2 to do lookups. This is much
more efficient than HTTP/1.1 due to multiplexing: we can issue many
requests in parallel over a single TCP connection. Thus it's no longer
necessary to use a bunch of concurrent TCP connections (25 by
default).
For example, downloading 802 .narinfo files from
https://cache.nixos.org/, using a single TCP connection, takes 11.8s
with HTTP/1.1, but only 0.61s with HTTP/2.
This did require a fairly substantial rewrite of the Downloader class
to use the curl multi interface, because otherwise curl wouldn't be
able to do multiplexing for us. As a bonus, we get connection reuse
even with HTTP/1.1. All downloads are now handled by a single worker
thread. Clients call Downloader::enqueueDownload() to tell the worker
thread to start the download, getting a std::future to the result.
The implementation of "partition" in Nixpkgs is O(n^2) (because of the
use of ++), and for some reason was causing stack overflows in
multi-threaded evaluation (not sure why).
This reduces "nix-env -qa --drv-path" runtime by 0.197s and memory
usage by 298 MiB (in non-Boehm mode).
Normally it's impossible to take a reference to the function passed to
callFunction, so some callers (e.g. ExprApp::eval) allocate that value
on the stack. For functors, a reference to the functor itself may be
kept, so we need to have it on the heap.
Fixes#1045
That is, unless --file is specified, the Nix search path is
synthesized into an attribute set. Thus you can say
$ nix build nixpkgs.hello
assuming $NIX_PATH contains an entry of the form "nixpkgs=...". This
is more verbose than
$ nix build hello
but is less ambiguous.
For example, you can now say:
configureFlags = "--prefix=${placeholder "out"} --includedir=${placeholder "dev"}";
The strings returned by the ‘placeholder’ builtin are replaced at
build time by the actual store paths corresponding to the specified
outputs.
Previously, you had to work around the inability to self-reference by doing stuff like:
preConfigure = ''
configureFlags+=" --prefix $out --includedir=$dev"
'';
or rely on ad-hoc variable interpolation semantics in Autoconf or Make
(e.g. --prefix=\$(out)), which doesn't always work.
E.g.
$ nix-build -I nixpkgs=git://github.com/NixOS/nixpkgs '<nixpkgs>' -A hello
This is not extremely useful yet because you can't specify a
branch/revision.
The function builtins.fetchgit fetches Git repositories at evaluation
time, similar to builtins.fetchTarball. (Perhaps the name should be
changed, being confusing with respect to Nixpkgs's fetchgit function,
with works at build time.)
Example:
(import (builtins.fetchgit git://github.com/NixOS/nixpkgs) {}).hello
or
(import (builtins.fetchgit {
url = git://github.com/NixOS/nixpkgs-channels;
rev = "nixos-16.03";
}) {}).hello
Note that the result does not contain a .git directory.
Thus, -I / $NIX_PATH entries are now downloaded only when they are
needed for evaluation. An error to download an entry is a non-fatal
warning (just like non-existant paths).
This does change the semantics of builtins.nixPath, which now returns
the original, rather than resulting path. E.g., before we had
[ { path = "/nix/store/hgm3yxf1lrrwa3z14zpqaj5p9vs0qklk-nixexprs.tar.xz"; prefix = "nixpkgs"; } ... ]
but now
[ { path = "https://nixos.org/channels/nixos-16.03/nixexprs.tar.xz"; prefix = "nixpkgs"; } ... ]
Fixes#792.
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
Also show types when nix cannot compare values of different types.
This is also more consistent since types are already shown when comparing values of the same not comparable type.
For example, "${{ foo = "bar"; __toString = x: x.foo; }}" evaluates
to "bar".
With this, we can delay calling functions like mkDerivation,
buildPythonPackage, etc. until we actually need a derivation, enabling
overrides and other modifications to happen by simple attribute set
update.
The value pointers of lists with 1 or 2 elements are now stored in the
list value itself. In particular, this makes the "concatMap (x: if
cond then [(f x)] else [])" idiom cheaper.
This ensures that 1) the derivation doesn't change when Nix changes;
2) the derivation closure doesn't contain Nix and its dependencies; 3)
we don't have to rely on ugly chroot hacks.
This modification moves Attr and Bindings structures into their own header
file which is dedicated to the attribute set representation. The goal of to
isolate pieces of code which are related to the attribute set
representation. Thus future modifications of the attribute set
representation will only have to modify these files, and not every other
file across the evaluator.
This relaxes restricted mode to allow access to anything in the
store. In the future, it would be better to allow access to only paths
that have been constructed in the current evaluation (so a hard-coded
/nix/store/blabla in a Nix expression would still be
rejected). However, note that reading /nix/store itself is still
rejected, so you can't use this so get access to things you don't know
about.
This is because we don't want to do HTTP requests on every evaluation,
even though we can prevent a full redownload via the cached ETag. The
default is one hour.
This function downloads and unpacks the given URL at evaluation
time. This is primarily intended to make it easier to deal with Nix
expressions that have external dependencies. For instance, to fetch
Nixpkgs 14.12:
with import (fetchTarball https://github.com/NixOS/nixpkgs-channels/archive/nixos-14.12.tar.gz) {};
Or to fetch a specific revision:
with import (fetchTarball 2766a4b44e.tar.gz) {};
This patch also adds a ‘fetchurl’ builtin that downloads but doesn't
unpack its argument. Not sure if it's useful though.
This doesn't work anymore if the "strict" chroot mode is
enabled. Instead, add Nix's store path as a dependency. This ensures
that its closure is present in the chroot.
If ‘--option restrict-eval true’ is given, the evaluator will throw an
exception if an attempt is made to access any file outside of the Nix
search path. This is primarily intended for Hydra, where we don't want
people doing ‘builtins.readFile ~/.ssh/id_dsa’ or stuff like that.
The DT_UNKNOWN fallback code was getting the type of the wrong path,
causing readDir to report "directory" as the type of every file.
Reported by deepfire on IRC.
Code that links to libnixexpr (e.g. plugins loaded with importNative, or
nix-exec) may want to provide custom value types and operations on
values of those types. For example, nix-exec is currently using sets
where a custom IO value type would be more appropriate. This commit
provides a generic hook for such types in the form of tExternal and the
ExternalBase virtual class, which contains all functions necessary for
libnixexpr's type-polymorphic functions (e.g. `showType`) to be
implemented.
The function ‘builtins.match’ takes a POSIX extended regular
expression and an arbitrary string. It returns ‘null’ if the string
does not match the regular expression. Otherwise, it returns a list
containing substring matches corresponding to parenthesis groups in
the regex. The regex must match the entire string (i.e. there is an
implied "^<pat>$" around the regex). For example:
match "foo" "foobar" => null
match "foo" "foo" => []
match "f(o+)(.*)" "foooobar" => ["oooo" "bar"]
match "(.*/)?([^/]*)" "/dir/file.nix" => ["/dir/" "file.nix"]
match "(.*/)?([^/]*)" "file.nix" => [null "file.nix"]
The following example finds all regular files with extension .nix or
.patch underneath the current directory:
let
findFiles = pat: dir: concatLists (mapAttrsToList (name: type:
if type == "directory" then
findFiles pat (dir + "/" + name)
else if type == "regular" && match pat name != null then
[(dir + "/" + name)]
else []) (readDir dir));
in findFiles ".*\\.(nix|patch)" (toString ./.)
Before this there was a bug where a `find` was being called on a
not-yet-sorted set. The code was just a mess before anyway, so I cleaned
it up while fixing it.
With this, attribute sets with a `__functor` attribute can be applied
just like normal functions. This can be used to attach arbitrary
metadata to a function without callers needing to treat it specially.
Clearing v.app.right was not enough, because the length field of a
list only takes 32 bits, so the most significant 32 bits of v.app.left
(a.k.a. v.thunk.env) would remain. This could cause Boehm GC to
interpret it as a valid pointer.
This change reduces maximum RSS for evaluating the ‘tested’ job in
nixos/release-small.nix from 1.33 GiB to 0.80 GiB, and runtime by
about 8%.
This can be used to import a dynamic shared object and return an
arbitrary value, including new primops. This can be used both to test
new primops without having to recompile nix every time, and to build
specialized primops that probably don't belong upstream (e.g. a function
that calls out to gpg to decrypt a nixops secret as-needed).
The imported function should initialize the Value & as needed. A single
import can define multiple values by creating an attrset or list, of
course.
An example initialization function might look like:
extern "C" void initialize(nix::EvalState & state, nix::Value & v)
{
v.type = nix::tPrimOp;
v.primOp = NEW nix::PrimOp(myFun, 1, state.symbols.create("myFun"));
}
Then `builtins.importNative ./example.so "initialize"` will evaluate to
the primop defined in the myFun function.
It's slower than ExprVar since it doesn't compute a static
displacement. Since we're not using the throw primop in the
implementation of <...> anymore, it's also not really needed.
Nix search path lookups like <nixpkgs> are now desugared to ‘findFile
nixPath <nixpkgs>’, where ‘findFile’ is a new primop. Thus you can
override the search path simply by saying
let
nixPath = [ { prefix = "nixpkgs"; path = "/my-nixpkgs"; } ];
in ... <nixpkgs> ...
In conjunction with ‘scopedImport’ (commit
c273c15cb1), the Nix search path can be
propagated across imports, e.g.
let
overrides = {
nixPath = [ ... ] ++ builtins.nixPath;
import = fn: scopedImport overrides fn;
scopedImport = attrs: fn: scopedImport (overrides // attrs) fn;
builtins = builtins // overrides;
};
in scopedImport overrides ./nixos
‘scopedImport’ works like ‘import’, except that it takes a set of
attributes to be added to the lexical scope of the expression,
essentially extending or overriding the builtin variables. For
instance, the expression
scopedImport { x = 1; } ./foo.nix
where foo.nix contains ‘x’, will evaluate to 1.
This has a few applications:
* It allows getting rid of function argument specifications in package
expressions. For instance, a package expression like:
{ stdenv, fetchurl, libfoo }:
stdenv.mkDerivation { ... buildInputs = [ libfoo ]; }
can now we written as just
stdenv.mkDerivation { ... buildInputs = [ libfoo ]; }
and imported in all-packages.nix as:
bar = scopedImport pkgs ./bar.nix;
So whereas we once had dependencies listed in three places
(buildInputs, the function, and the call site), they now only need
to appear in one place.
* It allows overriding builtin functions. For instance, to trace all
calls to ‘map’:
let
overrides = {
map = f: xs: builtins.trace "map called!" (map f xs);
# Ensure that our override gets propagated by calls to
# import/scopedImport.
import = fn: scopedImport overrides fn;
scopedImport = attrs: fn: scopedImport (overrides // attrs) fn;
# Also update ‘builtins’.
builtins = builtins // overrides;
};
in scopedImport overrides ./bla.nix
* Similarly, it allows extending the set of builtin functions. For
instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library
functions could be added to the default scope.
There is a downside: calls to scopedImport are not memoized, unlike
import. So importing a file multiple times leads to multiple parsings
/ evaluations. It would be possible to construct the AST only once,
but that would require careful handling of variables/environments.
This allows error messages like:
error: the anonymous function at `/etc/nixos/configuration.nix:1:1'
called without required argument `foo', at
`/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/lib/modules.nix:77:59'
If we're evaluating some application ‘v = f x’, we can't store ‘f’
temporarily in ‘v’, because if ‘f x’ refers to ‘v’, it will get ‘f’
rather than an infinite recursion error.
Unfortunately, this breaks the tail call optimisation introduced in
c897bac549.
Fixes#217.
Fixes#121. Note that we don't warn about missing $NIX_PATH entries
because it's intended that some may be missing (cf. the default
$NIX_PATH on NixOS, which includes paths like /etc/nixos/nixpkgs for
backward compatibility).