we don't *need* symbols here. the only advantage they have over strings is
making call-counting slightly faster, but that's a diagnostic feature and thus
needn't be optimized.
this also fixes a move bug that previously didn't show up: PrimOp structs were
accessed after being moved from, which technically invalidates them. previously
the names remained valid because Symbol copies on move, but strings are
invalidated. we now copy the entire primop struct instead of moving since primop
registration happen once and are not performance-sensitive.
Impure derivations are derivations that can produce a different result
every time they're built. Example:
stdenv.mkDerivation {
name = "impure";
__impure = true; # marks this derivation as impure
outputHashAlgo = "sha256";
outputHashMode = "recursive";
buildCommand = "date > $out";
};
Some important characteristics:
* This requires the 'impure-derivations' experimental feature.
* Impure derivations are not "cached". Thus, running "nix-build" on
the example above multiple times will cause a rebuild every time.
* They are implemented similar to CA derivations, i.e. the output is
moved to a content-addressed path in the store. The difference is
that we don't register a realisation in the Nix database.
* Pure derivations are not allowed to depend on impure derivations. In
the future fixed-output derivations will be allowed to depend on
impure derivations, thus forming an "impurity barrier" in the
dependency graph.
* When sandboxing is enabled, impure derivations can access the
network in the same way as fixed-output derivations. In relaxed
sandboxing mode, they can access the local filesystem.
```console
$ nix eval --expr '({ foo ? 1 }: foo) { fob = 2; }'
error: anonymous function at (string):1:2 called with unexpected argument 'fob'
at «string»:1:1:
1| ({ foo ? 1 }: foo) { fob = 2; }
| ^
Did you mean foo?
```
Not that because Nix will first check for _missing_ arguments before
checking for extra arguments, `({ foo }: foo) { fob = 1; }` will
complain about the missing `foo` argument (rather than extra `fob`) and
so won’t display a suggestion.
Make the evaluator show some suggestions when trying to access an
invalid field from an attrset.
```console
$ nix eval --expr '{ foo = 1; }.foa'
error: attribute 'foa' missing
at «string»:1:1:
1| { foo = 1; }.foa
| ^
Did you mean foo?
```
Refactor the `size == 0` logic into a new helper function that
replaces dupStringWithLen.
The name had to change, because unlike a `dup`-function, it does
not always allocate a new string.
We now memoize on Bindings / list element vectors rather than Values,
so that e.g. two Values that point to the same Bindings will be
printed only once.
This is useful whenever we want to evaluate something to a store path
(e.g. in get-drvs.cc).
Extracted from the lazy-trees branch (where we can require that a
store path must come from a store source tree accessor).
This was introduced in #6174. However fetch{url,Tarball} are legacy
and we shouldn't have an undocumented attribute that does the same
thing as one that already exists ('sha256').
we'll retain the old coerceToString interface that returns a string, but callers
that don't need the returned value to outlive the Value it came from can save
copies by using the new interface instead. for values that weren't stringy we'll
pass a new buffer argument that'll be used for storage and shouldn't be
inspected.
keeping it as a simple data member means it won't be scanned by the GC, so
eventually the GC will collect a cache that is still referenced (resulting in
use-after-free of cache elements).
fixes#5962
- Make passing the position to `forceValue` mandatory,
this way we remember people that the position is
important for better error messages
- Add pos to all `forceValue` calls
if we defer the duplicate argument check for lambda formals we can use more
efficient data structures for the formals set, and we can get rid of the
duplication of formals names to boot. instead of a list of formals we've seen
and a set of names we'll keep a vector instead and run a sort+dupcheck step
before moving the parsed formals into a newly created lambda. this improves
performance on search and rebuild by ~1%, pure parsing gains more (about 4%).
this does reorder lambda arguments in the xml output, but the output is still
stable. this shouldn't be a problem since argument order is not semantically
important anyway.
before
nix search --no-eval-cache --offline ../nixpkgs hello
Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s]
Range (min … max): 8.435 s … 8.666 s 20 runs
nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix
Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms]
Range (min … max): 343.8 ms … 353.4 ms 20 runs
nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'
Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s]
Range (min … max): 2.662 s … 2.780 s 20 runs
after
nix search --no-eval-cache --offline ../nixpkgs hello
Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s]
Range (min … max): 8.339 s … 8.542 s 20 runs
nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix
Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms]
Range (min … max): 326.1 ms … 330.8 ms 20 runs
nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'
Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s]
Range (min … max): 2.626 s … 2.754 s 20 runs
there's a few symbols in primops we can create once and pick them out of
EvalState afterwards instead of creating them every time we need them. this
gives almost 1% speedup to an uncached nix search.
constructing an ostringstream for non-string concats (like integer addition) is
a small constant cost that we can avoid. for string concats we can keep all the
string temporaries we get from coerceToString and concatenate them in one go,
which saves a lot of intermediate temporaries and copies in ostringstream. we
can also avoid copying the concatenated string again by directly allocating it
in GC memory and moving ownership of the concatenated string into the target
value.
saves about 2% on system eval.
before:
Benchmark 1: nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'
Time (mean ± σ): 2.837 s ± 0.031 s [User: 2.562 s, System: 0.191 s]
Range (min … max): 2.796 s … 2.892 s 20 runs
after:
Benchmark 1: nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'
Time (mean ± σ): 2.790 s ± 0.035 s [User: 2.532 s, System: 0.187 s]
Range (min … max): 2.722 s … 2.836 s 20 runs
Previously you had to remember to call value->attrs->sort() after
populating value->attrs. Now there is a BindingsBuilder helper that
wraps Bindings and ensures that sort() is called before you can use
it.
calling GC_malloc for each value is significantly more expensive than
allocating a bunch of values at once with GC_malloc_many. "a bunch" here
is a GC block size, ie 16KiB or less.
this gives a 1.5% performance boost when evaluating our nixos system.
tested with
nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'
# on master
Time (mean ± σ): 3.335 s ± 0.007 s [User: 2.774 s, System: 0.293 s]
Range (min … max): 3.315 s … 3.347 s 50 runs
# with this change
Time (mean ± σ): 3.288 s ± 0.006 s [User: 2.728 s, System: 0.292 s]
Range (min … max): 3.274 s … 3.307 s 50 runs
If we’re in pure eval mode, then tell that in the error message rather
than (wrongly) speaking about restricted mode.
Fix https://github.com/NixOS/nix/issues/5611
This is not really useful on its own, but it does recover the
'infinite recursion' error message for '{ __functor = x: x; } 1', and
is more efficient in conjunction with #3718.
Fixes#5515.
We now parse function applications as a vector of arguments rather
than as a chain of binary applications, e.g. 'substring 1 2 "foo"' is
parsed as
ExprCall { .fun = <substring>, .args = [ <1>, <2>, <"foo"> ] }
rather than
ExprApp (ExprApp (ExprApp <substring> <1>) <2>) <"foo">
This allows primops to be called immediately (if enough arguments are
supplied) without having to allocate intermediate tPrimOpApp values.
On
$ nix-instantiate --dry-run '<nixpkgs/nixos/release-combined.nix>' -A nixos.tests.simple.x86_64-linux
this gives a substantial performance improvement:
user CPU time: median = 0.9209 mean = 0.9218 stddev = 0.0073 min = 0.9086 max = 0.9340 [rejected, p=0.00000, Δ=-0.21433±0.00677]
elapsed time: median = 1.0585 mean = 1.0584 stddev = 0.0024 min = 1.0523 max = 1.0623 [rejected, p=0.00000, Δ=-0.20594±0.00236]
because it reduces the number of tPrimOpApp allocations from 551990 to
42534 (i.e. only small minority of primop calls are partially
applied) which in turn reduces time spent in the garbage collector.
Rather than having them plain strings scattered through the whole
codebase, create an enum containing all the known experimental features.
This means that
- Nix can now `warn` when an unkwown experimental feature is passed
(making it much nicer to spot typos and spot deprecated features)
- It’s now easy to remove a feature altogether (once the feature isn’t
experimental anymore or is dropped) by just removing the field for the
enum and letting the compiler point us to all the now invalid usages
of it.
The boolean is only used to determine if the formals are set to a
non-null pointer in all our cases. We can get rid of that allocation and
instead just compare the pointer value with NULL. Saving up to
sizeof(bool) + platform specific alignment per ExprLambda instace.
Probably not a lot of memory but perhaps a few kilobyte with nixpkgs?
This also gets rid of a potential issue with dereferencing formals based on
the value of the boolean that didn't have to be aligned with the formals
pointer but was in all our cases.
I found it somewhat confusing to have an error like
error: attribute 'getFlake' missing
if the required experimental-feature (`flakes`) is not enabled. Instead,
I'd expect Nix to throw an error just like it's the case when using e.g. `nix
flake` without `flakes` being enabled.
With this change, the error looks like this:
$ nix-instantiate -E 'builtins.getFlake "nixpkgs"'
error: Cannot call 'builtins.getFlake' because experimental Nix feature 'flakes' is disabled. You can enable it via '--extra-experimental-features flakes'.
at «string»:1:1:
1| builtins.getFlake "nixpkgs"
| ^
I didn't use `settings.requireExperimentalFeature` here on purpose
because this doesn't contain a position. Also, it doesn't seem as if we
need to catch the error and check for the missing feature here since
this already happens at evaluation time.
Previously, type or coercion errors for string interpolation, path
interpolation, and plus expressions were always reported at the
beginning of the outer expression. This leads to confusing evaluation
error messages making it hard to accurately diagnose and then fix the
error.
For example, errors were reported as follows.
```
cannot coerce an integer to a string
1| let foo = 7; in "bar" + foo
| ^
cannot add a string to an integer
1| let foo = "bar"; in 4 + foo
| ^
cannot coerce an integer to a string
1| let foo = 7; in "x${foo}"
| ^
```
This commit changes the ExprConcatStrings expression vector to store a
sequence of expressions *and* their expansion locations so that error
locations can be reported accurately. For interpolation, the error is
reported at the beginning of the entire `${foo}`, not at the beginning
of `foo` because I thought this was slightly clearer. The previous
errors are now reported as:
```
cannot coerce an integer to a string
1| let foo = 7; in "bar" + foo
| ^
cannot add a string to an integer
1| let foo = "bar"; in 4 + foo
| ^
cannot coerce an integer to a string
1| let foo = 7; in "x${foo}"
| ^
```
The error is reported at this kind of precise location even for
multi-line indented strings.
This probably helps with at least some of the cases mentioned in #561
This fixes a class of crashes and introduces ptr<T> to make the
code robust against this failure mode going forward.
Thanks regnat for the idea of a ref<T> without overhead!
Closes#4895Closes#4893Closes#5127Closes#5113
When working on some more complex Nix code, there are sometimes rather
unhelpful or misleading error messages, especially if coerce-errors are
thrown.
This patch is a first steps towards improving that. I'm happy to file
more changes after that, but I'd like to gather some feedback first.
To summarize, this patch does the following things:
* Attrsets (a.k.a. `Bindings` in `libexpr`) now have a `Pos`. This is
helpful e.g. to identify which attribute-set in `listToAttrs` is
invalid.
* The `Value`-struct has a new method named `determinePos` which tries
to guess the position of a value and falls back to a default if that's
not possible.
This can be used to provide better messages if a coercion fails.
* The new `determinePos`-API is used by `builtins.concatMap` now. With
that change, Nix shows the exact position in the error where a wrong
value was returned by the lambda.
To make sure it's still obvious that `concatMap` is the problem,
another stack-frame was added.
* The changes described above can be added to every other `primop`, but
first I'd like to get some feedback about the overall approach.
Changes:
* The divider lines are gone. These were in practice a bit confusing,
in particular with --show-trace or --keep-going, since then there
were multiple lines, suggesting a start/end which wasn't the case.
* Instead, multi-line error messages are now indented to align with
the prefix (e.g. "error: ").
* The 'description' field is gone since we weren't really using it.
* 'hint' is renamed to 'msg' since it really wasn't a hint.
* The error is now printed *before* the location info.
* The 'name' field is no longer printed since most of the time it
wasn't very useful since it was just the name of the exception (like
EvalError). Ideally in the future this would be a unique, easily
googleable error ID (like rustc).
* "trace:" is now just "…". This assumes error contexts start with
something like "while doing X".
Example before:
error: --- AssertionError ---------------------------------------------------------------------------------------- nix
at: (7:7) in file: /home/eelco/Dev/nixpkgs/pkgs/applications/misc/hello/default.nix
6|
7| x = assert false; 1;
| ^
8|
assertion 'false' failed
----------------------------------------------------- show-trace -----------------------------------------------------
trace: while evaluating the attribute 'x' of the derivation 'hello-2.10'
at: (192:11) in file: /home/eelco/Dev/nixpkgs/pkgs/stdenv/generic/make-derivation.nix
191| // (lib.optionalAttrs (!(attrs ? name) && attrs ? pname && attrs ? version)) {
192| name = "${attrs.pname}-${attrs.version}";
| ^
193| } // (lib.optionalAttrs (stdenv.hostPlatform != stdenv.buildPlatform && !dontAddHostSuffix && (attrs ? name || (attrs ? pname && attrs ? version)))) {
Example after:
error: assertion 'false' failed
at: (7:7) in file: /home/eelco/Dev/nixpkgs/pkgs/applications/misc/hello/default.nix
6|
7| x = assert false; 1;
| ^
8|
… while evaluating the attribute 'x' of the derivation 'hello-2.10'
at: (192:11) in file: /home/eelco/Dev/nixpkgs/pkgs/stdenv/generic/make-derivation.nix
191| // (lib.optionalAttrs (!(attrs ? name) && attrs ? pname && attrs ? version)) {
192| name = "${attrs.pname}-${attrs.version}";
| ^
193| } // (lib.optionalAttrs (stdenv.hostPlatform != stdenv.buildPlatform && !dontAddHostSuffix && (attrs ? name || (attrs ? pname && attrs ? version)))) {
Move clearValue inside Value
mkInt instead of setInt
mkBool instead of setBool
mkString instead of setString
mkPath instead of setPath
mkNull instead of setNull
mkAttrs instead of setAttrs
mkList instead of setList*
mkThunk instead of setThunk
mkApp instead of setApp
mkLambda instead of setLambda
mkBlackhole instead of setBlackhole
mkPrimOp instead of setPrimOp
mkPrimOpApp instead of setPrimOpApp
mkExternal instead of setExternal
mkFloat instead of setFloat
Add note that the static mk* function should be removed eventually
Crucially this introduces BoehmGCStackAllocator, but it also
adds a bunch of wiring to avoid making libutil depend on bdw-gc.
Part of the solutions for #4178, #4200
Otherwise the result of the printing can't be parsed back correctly by
Nix (because the unescaped `${` will be parsed as the begining of an
anti-quotation).
Fix#3989
The change in 626200713b didn't account
for when the number of auto arguments is bigger than the number of
formal arguments. This causes the following:
$ nix-instantiate --eval -E '{ ... }@args: args.foo' --argstr foo foo
nix-instantiate: src/libexpr/attr-set.hh:55: void nix::Bindings::push_back(const nix::Attr&): Assertion `size_ < capacity_' failed.
Aborted (core dumped)
The command line options --arg and --argstr that are used by a bunch of
CLI commands to pass arguments to top-level functions in files go
through the same code-path as auto-calling top-level functions with
their default arguments - this, however, was only passing the arguments
that were *explicitly* mentioned in the formals of the function - in the
case of an as-pattern with an ellipsis (eg args @ { ... }) extra passed
arguments would get omitted. This fixes that to instead pass *all*
specified auto args in the case that our function has an ellipsis.
Fixes#598
This allows interactively inspecting the state of the evaluator at the
point of failure.
Example:
$ nix eval path:///home/eelco/Dev/nix/flake2#modules.hello-closure._final --start-repl-on-eval-errors
error: --- TypeError -------------------------------------------------------------------------------------------------------------------------------------------------------------------- nix
at: (20:53) in file: /nix/store/4264z41dxfdiqr95svmpnxxxwhfplhy0-source/flake.nix
19|
20| _final = builtins.foldl' (xs: mod: xs // (mod._module.config { config = _final; })) _defaults _allModules;
| ^
21| };
attempt to call something which is not a function but a set
Starting REPL to allow you to inspect the current state of the evaluator.
The following extra variables are in scope: arg, fun
Welcome to Nix version 2.4. Type :? for help.
nix-repl> fun
error: --- EvalError -------------------------------------------------------------------------------------------------------------------------------------------------------------------- nix
at: (150:28) in file: /nix/store/4264z41dxfdiqr95svmpnxxxwhfplhy0-source/flake.nix
149|
150| tarballClosure = (module {
| ^
151| extends = [ self.modules.derivation ];
attribute 'derivation' missing
nix-repl> :t fun
a set
nix-repl> builtins.attrNames fun
[ "tarballClosure" ]
nix-repl>
If you do a fetchTree on a Git repository, whether the result contains
a revCount attribute should not depend on whether that repository
happens to be a shallow clone or not. That would complicate caching a
lot and would be semantically messy. So applying fetchTree/fetchGit to
a shallow repository is now an error unless you pass the attribute
'shallow = true'. If 'shallow = true', we don't return revCount, even
if the repository is not actually shallow.
Note that Nix itself is not doing shallow clones at the moment. But it
could do so as an optimisation if the user specifies 'shallow = true'.
Issue #2988.
Includes the expression of the condition in the assertion message if
the assertion failed, making assertions much easier to debug. eg.
error: assertion (withPython -> (python2Packages != null)) failed at pkgs/tools/security/nmap/default.nix:11:1
This prevents them from being inlined. On gcc 9, this reduces the
stack size needed for
nix-instantiate '<nixpkgs>' -A texlive.combined.scheme-full --dry-run
from 12.9 MiB to 4.8 MiB.
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
The FunctionCallTrace object consumes a few hundred bytes of stack
space, even when tracing is disabled. This was causing stack overflows:
$ nix-instantiate '<nixpkgs> -A texlive.combined.scheme-full --dry-run
error: stack overflow (possible infinite recursion)
This is with the default stack size of 8 MiB.
Putting the object on the heap reduces stack usage to < 5 MiB.
With this patch, and this file I called `log.py`:
#!/usr/bin/env nix-shell
#!nix-shell -i python3 -p python3 --pure
import sys
from pprint import pprint
stack = []
timestack = []
for line in open(sys.argv[1]):
components = line.strip().split(" ", 2)
if components[0] != "function-trace":
continue
direction = components[1]
components = components[2].rsplit(" ", 2)
loc = components[0]
_at = components[1]
time = int(components[2])
if direction == "entered":
stack.append(loc)
timestack.append(time)
elif direction == "exited":
dur = time - timestack.pop()
vst = ";".join(stack)
print(f"{vst} {dur}")
stack.pop()
and:
nix-instantiate --trace-function-calls -vvvv ../nixpkgs/pkgs/top-level/release.nix -A unstable > log.matthewbauer 2>&1
./log.py ./log.matthewbauer > log.matthewbauer.folded
flamegraph.pl --title matthewbauer-post-pr log.matthewbauer.folded > log.matthewbauer.folded.svg
I can make flame graphs like: http://gsc.io/log.matthewbauer.folded.svg
---
Includes test cases around function call failures and tryEval. Uses
RAII so the finish is always called at the end of the function.
In EvalState::checkSourcePath, the path is checked against the list of
allowed paths first and later it's checked again *after* resolving
symlinks.
The resolving of the symlinks is done via canonPath, which also strips
out "../" and "./". However after the canonicalisation the error message
pointing out that the path is not allowed prints the symlink target in
the error message.
Even if we'd suppress the message, symlink targets could still be leaked
if the symlink target doesn't exist (in this case the error is thrown in
canonPath).
So instead, we now do canonPath() without symlink resolving first before
even checking against the list of allowed paths and then later do the
symlink resolving and checking the allowed paths again.
The first call to canonPath() should get rid of all the "../" and "./",
so in theory the only way to leak a symlink if the attacker is able to
put a symlink in one of the paths allowed by restricted evaluation mode.
For the latter I don't think this is part of the threat model, because
if the attacker can write to that path, the attack vector is even
larger.
Signed-off-by: aszlig <aszlig@nix.build>